

Digitool

For
 Macintosh

Common Lisp
 versions

3.1 and 4.0

Getting Started with
Macintosh Common Lisp

Digitool

030-7790-B
Developer Technical Publications
© Digitool, Inc. 1996

Digitool, Inc.
© 1996, Digitool, Inc. All rights
reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any
form or by any means,
mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Digitool, Inc.,
except in the normal use of the
software or to make a backup
copy of the software. The same
proprietary and copyright
notices must be affixed to any
permitted copies as were affixed
to the original. This exception
does not allow copies to be made
for others, whether or not sold,
but all of the material purchased
(with all backup copies) may be
sold, given, or loaned to another
person. Under the law, copying
includes translating into another
language or format. You may use
the software on any computer
owned by you, but extra copies
cannot be made for this purpose.
Printed in the United States of
America.
MCL is a trademark of
Digitool, Inc.
One Main Street,
Cambridge, MA 02142
617-441-5000
The Apple logo is a registered
trademark of Apple Computer,
Inc. Use of the “keyboard” Apple
logo (Option-Shift-K) for
commercial purposes without
the prior written consent of
Apple may constitute trademark
infringement and unfair
competition in violation of
federal and state laws.
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010
Apple, the Apple logo, the Apple
Developer Catalog (formerly
APDA), AppleLink, A/UX,
LaserWriter, Macintosh, and
MPW are trademarks of Apple
Computer, Inc., registered in the
United States and other
countries.
Balloon Help, Finder,

QuickDraw, and ToolServer are
trademarks of Apple Computer,
Inc.
Adobe, Acrobat and PostScript
are registered trademarks of
Adobe Systems Incorporated.
CompuServe is a registered
trademark of CompuServe, Inc.
Palatino is a registered
trademark of Linotype
Company.
Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Microsoft is a registered
trademark of Microsoft
Corporation.
UNIX is a registered trademark
of UNIX System Laboratories,
Inc.
Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects
in the manual or in the media on
which a software product is
distributed, Digitool will replace
the media or manual at no charge
to you provided you return the
item to be replaced with proof of
purchase to Digitool.
ALL IMPLIED WARRANTIES
ON THIS MANUAL,
INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF
THE ORIGINAL RETAIL
PURCHASE OF THIS
PRODUCT.
Even though Digitool has
reviewed this manual,
DIGITOOL MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS

IS,” AND YOU, THE
PURCHASER, ARE
ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND ACCURACY.
IN NO EVENT WILL
DIGITOOL BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL
DAMAGES RESULTING
FROM ANY DEFECT OR
INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.
THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS
OR IMPLIED. No Digitool
dealer, agent, or employee is
authorized to make any
modification, extension, or
addition to this warranty.
Some states do not allow the
exclusion or limitation of implied
warranties or liability for
incidental or consequential
damages, so the above limitation
or exclusion may not apply to
you. This warranty gives you
specific legal rights, and you may
also have other rights which vary
from state to state.

Contents

Contents / 3

Figures and tables / 7

Introduction / 9
Introducing Macintosh Common Lisp / 10
MCL 4.0 and 3.1 / 11
Roadmap: Learning MCL / 12
For more information / 14

MCL Discussions and Announcements / 14
Technical Support and Bug Reports / 15
Other Internet Resources / 15
Contacting Digitool / 16

Chapter 1:
Installing MCL / 17
System requirements / 18

MCL 4.0 / 18
MCL 3.1 / 18

Installation / 19
Installing MCL 4.0 / 19
MCL 4.0 Memory Requirements / 20
Installing MCL 3.1 / 21
MCL 3.1 Memory Requirements / 21

Creating Installation Floppies / 22

Chapter 2:
A Brief Tour of MCL / 23
Overview of MCL / 24
Starting MCL / 24
Interacting with the Listener / 25

Evaluating expressions / 26
Working with the Listener / 27
The Listener and the Lisp Heap / 28
The Listener and text files / 29

The MCL editor, Fred / 30
Contents 3

Creating a Fred window / 30
Executing expressions in a Fred window / 31
Lisp-based editing / 32
Saving source code to a file / 35
Getting help on Fred commands / 35

Other Window Features / 37
Compiling files / 38
What you’ve learned / 40

Chapter 3:
The Application Framework / 41
Overview / 42
Windows and views / 42

Creating a window / 42
Views and subviews / 43
Creating a complex window / 45

Menus / 46
Adding a menu and a menu-item / 46

The interface toolkit / 47
Preserving programming sessions / 47
What you’ve learned / 48

Chapter 4:
Debugging / 49
MCL’s multiple debugging facilities / 50
Documentation commands / 50

Source code / 50
Argument lists / 51
Documentation / 52

Introspection commands / 53
Free space / 53
Finding symbols / 53
Examining objects with the Inspector / 55

Errors and Break Loops / 59
Reading an error message / 59
Recovering or aborting / 60
The break loop / 62
The stack backtrace / 64
Processes / 65

The stepper / 66
4 Getting Started With Macintosh Common Lisp

Trace / 67
What you’ve learned about debugging / 68

Chapter 5:
Sources of Additional Information / 69
Common Lisp References / 70
Common Lisp Tutorials / 70

If you are learning CLOS / 71
Macintosh Programming / 71
Examples / 72

Appendix A:
Fred Commands / 73
Fred modifier keys / 74
Help commands / 75
Movement / 76
Selection / 77
Insertion / 77
Deletion / 79
Lisp operations / 80
Windows / 80
Incremental search / 81

Appendix B:
The Common Lisp Object System / 83
MCL and CLOS / 84
Definitions / 84

Classes and their superclasses / 84
Slots / 85
Instances / 85
Generic functions and methods / 86

Classes and instances / 87
Creating a class with the macro defclass / 87
Creating an instance and giving its slots values / 88
Redefining a class / 90
Allocating the value of a slot in a class / 90
Classes as prototypes of other classes / 91

Methods / 92
Defining a method and creating a generic function / 92
Congruent lambda lists / 93
Defining methods on instances / 93
Contents 5

Creating and using accessor methods / 94
Customizing initialization with initialize-instance / 96
Creating subclasses and specializing their methods / 96

Method combination / 97
The primary method / 97
The primary method and the class precedence list / 98
Examples of classes with multiple superclasses / 98
Creating auxiliary methods and using method qualifiers / 100

Extended examples / 102

Appendix C:
The MCL Menubar / 103
The MCL Menubar / 104
Apple menu / 104
File menu / 104
Edit menu / 105
Lisp menu / 106
Tools menu / 107
Windows menu / 108

Index / 111
6 Getting Started With Macintosh Common Lisp

Figures and tables

The MCL Menubar / 25
A Listener window / 26
A simple Listener interaction / 27
A Fred window and a Listener / 31
Executing an expression from a Fred window / 33
The Fred commands window / 36
The documentation window / 39
The apropos window / 54
An Inspector window showing components of a window / 56
An apropos window and the Inspector / 58
The restarts window / 61
Effects on the stack of break, abort, and continue / 63
A stack backtrace / 64
Stepping through the factorial function / 66
Table A-1 Help command keystrokes / 75
Table A-2 Movement command keystrokes / 76
Table A-3 Selection command keystrokes / 77
Table A-4 Insertion command keystrokes / 77
Table A-5 Deletion command keystrokes / 79
Table A-6 Lisp operation command keystrokes / 80
Table A-7 Window command keystrokes / 81
Table A-8 Search command keystrokes / 82
The class fourth-grader / 88
An instance of fourth-grader with a value in the name slot / 89
7

8 Getting Started With Macintosh Common Lisp

9

Introduction

Contents

Introducing Macintosh Common Lisp / 10
MCL 4.0 and 3.1 / 11
Roadmap: Learning MCL / 12

Learning the Macintosh / 12
Learning Common Lisp / 12
Learning MCL / 13
Exploring MCL / 13

For more information / 14
MCL Discussions and Announcements / 14
Technical Support and Bug Reports / 15
Other Internet Resources / 15

The Digitool Web Page / 15
The MCL ftp Site / 15

Contacting Digitool / 16

This introduction provides an overview of MCL, and describes the roadmap
and resources for learning MCL.

Introducing Macintosh Common Lisp

Welcome to Macintosh Common Lisp, a fluid and flexible
programming environment for developing software tools and
applications.

Macintosh Common Lisp is built around a high-level object-oriented
language, a fast, interactive compiler, a complete suite of programming
tools, and a hassle-free object-oriented application framework.

■ Forty years of evolution have made Lisp both efficient and rich in
programmer-oriented features. Its object system and large suite of
libraries give it unparalleled power, while the presence of garbage
collection and abstraction mechanisms ensure that you can easily
apply that power to solve complex problems.

■ MCL’s interactive programming environment saves time and
simplifies debugging. You can compile, test, and correct functions and
classes individually, without having to halt, recompile, relink and
restart entire programs. Definitions can be recompiled and test
functions can be executed in the context of the running program,
allowing you to explore data structures and behaviors interactively.
Typical recompilations take under a second.

■ MCL’s programing tools begin with a fast fully programmable editor.
Debugging is supported by a graphical inspector, source-code stepper,
and stack backtrace. A single keystroke gives you access to signatures
and documentation for built-in as well as user-defined objects.

■ The application framework provides major portions of the Macintosh
Toolbox as high-level Lisp objects. The design makes it easy to
interactively explore the application framework, quickly learning how
to build a fully customized graphical user interface for your
application. MCL also provides complete low-level access to all
Macintosh OS calls and data structures, for those Macintosh features
which are not yet supported by the framework.
10

MCL 4.0 and 3.1

This documentation describes two versions of Macintosh Common
Lisp. Both are included in the standard software distribution.

Macintosh Common Lisp 4.0
Macintosh Common Lisp 4.0 runs as a native PowerPC application
and includes a compiler that produces native PowerPC code.

Macintosh Common Lisp 3.1
Macintosh Common Lisp 3.1 runs as a native 68x application and
includes a compiler that produces 68x code. It will also run under
emulation on a Power Macintosh, although this configuration is no
longer recommended.

For the most part, MCL 4.0 and MCL 3.1 provide the same interface and
feature set. The same source code should compile and run with the
same behavior (although at different speeds) in both versions. The same
programming tools and libraries are available in both versions.

There are a small number of areas where MCL 4.0 and MCL 3.1 differ.
Chief among these are the OS interface and foreign function interface.
They also differ in their representation of objects and in the object
runtime, so the behavior of the garbage collector, size limits of objects,
etc. will vary between the two versions. Where MCL 4.0 and MCL 3.1
differ, the documentation will describe both, first describing the feature
or behavior of MCL 4.0, and then describing the feature or behavior of
MCL 3.1.
Introduction 11

Roadmap: Learning MCL

Because of its interactive nature, it is relatively easy to learn how to use
MCL and to quickly become productive using it.

Learning the Macintosh

Before using MCL, you should be familiar with at least the basics of the
Macintosh: how to select menu commands, use windows, manipulate
files, etc. If you have never used a Macintosh, you should take some
time to familiarize yourself with it before proceeding to use MCL. This
will not only make it easier to learn MCL, but will help ensure that the
programs you write conform to Macintosh standards.

Learning Common Lisp

It is not necessary to know Common Lisp before beginning to use MCL.
Indeed, MCL’s interactive environment is a great way to learn
Common Lisp. There are several ways to begin learning Common Lisp:

■ A number of textbooks and tutorials are available for Common Lisp
and the Common Lisp Object System (CLOS). Some are described in
“Common Lisp Tutorials” on page 70.

■ This Getting Started Guide describes some basic features of Common
Lisp, and includes a short CLOS tutorial.

■ The sample programs which come with MCL are a valuable source of
information both on Common Lisp, and on the MCL application
framework.

■ Two Common Lisp reference works are available. These are not
tutorials, but are complete descriptions of every feature of the
language.

 Common Lisp: the Language, second edition is available in HTML
format in the documentation folder of the MCL CD.

 The ANSI Common Lisp standard (X3.226-1994) is available in
HTML format on the internet, at
<http://www.harlequin.com/books/HyperSpec/>

MCL implements the language as described in Common Lisp: the
Language, second edition. However, this version is close enough to the
ANSI standard that the latter is still quite a useful reference when using
MCL.
12 Getting Started With Macintosh Common Lisp

Learning MCL

This Getting Started Guide is the best way to begin learning MCL. It
includes installation instructions followed by activity-driven
introductions to the main elements of MCL:

■ The read-eval-print loop, for interactively running Lisp code.

■ The editor and listener windows.

■ Compiling files.

■ Aspects of the application framework.

■ Debugging and on-line help tools.

■ Customizing your environment.

■ The Common Lisp Object System (CLOS)

The Macintosh Common Lisp Reference Manual provides a complete
description of every feature of MCL, including the user interface, the
application framework and other extensions which MCL provides to
the Common Lisp language.

Online documentation is provided through balloon help and through
documentation strings for built-in symbols.

Exploring MCL

By far the best way to learn MCL is just to dive in and explore. As you
work through the Getting Started Guide, try out variations of the
examples given, flip through the reference manual and try alternative
functions. Because MCL is a fully type-checked and garbage-collected
language, your explorations will be safe. Unless you are making direct
OS calls, you won’t have to worry about crashing. So sit back, relax, and
explore.
Introduction 13

For more information

A number of MCL-related resources are available through the Internet.

MCL Discussions and Announcements

There are active Internet discussions on all subjects relating to MCL.
People use these discussions to ask questions, post tips, and share code.
Engineers from Digitool monitor these discussions for questions.

The discussions can be accessed either as an e-mail mailing list, or
through net news. Both these formats contain the same messages. Use
the one which you find to be most convenient.

■ info-mcl@digitool.com
Subscribe to this list if you want to receive each posting to info-mcl as
an individual e-mail message. To subscribe, send a message to info-
mcl-request@digitool.com.

■ info-mcl-digest@digitool.com
Subscribe to this list if you want to receive a single e-mail message per
day, containing all the day’s messages from info-mcl. To subscribe,
send mail to info-mcl-digest-request@digitool.com.

■ news:comp.lang.lisp.mcl
Read info-mcl through net news if you prefer this format to e-mail.

For those who do not want to participate in MCL discussions, but are
still interested in hearing announcements relating to MCL, there is the
announce-mcl mailing list.

■ announce-mcl@digitool.com
This mailing list is used to publish major announcements related to
MCL. It is a very low-volume mailing list, so its guaranteed not to
clutter your mail box. To subscribe, send mail to announce-mcl-
request@digitool.com. It is not necessary to subscribe to both
announce-mcl and info-mcl. Messages sent to announce-mcl are
automatically routed to info-mcl as well.
14 Getting Started With Macintosh Common Lisp

Technical Support and Bug Reports

All technical support questions other than bug reports are handled via
the info-mcl mailing list and are answered by Digitool’s technical
staff and by other members of the MCL community. Messages can be
sent to info-mcl@digitool.com or posted to
comp.lang.lisp.mcl.

Bug reports should be sent to bug-mcl@digitool.com. When you
send in a bug report, please include a detailed description of your
machine configuration and a description of your problem. If you can
send a small fragment of code which reproduces the problem, that
would also be of great help.

Other Internet Resources

The Digitool Web Page

The Digitool web page includes pointers to many MCL resources,
including the mailing lists, the ftp site, lists of consultants who work in
MCL, applications and research projects developed in MCL, price lists
and product descriptions, etc.

The web page is located at http://www.digitool.com/

The MCL ftp Site

The MCL ftp site is home to patches and sample code from Digitool,
and to MCL code contributed by users. If you have a utility or library
which you’d like to share with the MCL community, you can upload it
here. Conversely, if you’re looking for a subsystem for MCL and think
someone might have already written it, you can look for it here.

The MCL ftp site is located at ftp://ftp.digitool.com/pub/
mcl/.
Introduction 15

Contacting Digitool

Macintosh Common Lisp products are developed by Digitool, Inc.
Please contact for additional information about Macintosh Common
Lisp products, site licenses, and redistribution licenses.

Digitool, Inc.
One Main Street
Cambridge, MA 02142

Tel: 1-617-441-5000
Fax: 1-617-576-7680
E-mail: info@digitool.com
Web: http://www.digitool.com/
16 Getting Started With Macintosh Common Lisp

17

Chapter

1:

Installing MCL

Contents

System requirements / 18
MCL 4.0 / 18
MCL 3.1 / 18

Installation / 19
Installing MCL 4.0 / 19
MCL 4.0 Memory Requirements / 20
Installing MCL 3.1 / 21
MCL 3.1 Memory Requirements / 21

Creating Installation Floppies / 22

This chapter tells you how to install MCL, and describes the Macintosh
configurations required to run MCL.

System requirements

This section describes the system requirements for MCL 4.0 and 3.1,
including the amount of disk space and RAM needed, and the versions
of the Macintosh OS required.

MCL 4.0

Macintosh Common Lisp 4.0 will run on any PowerPC-based
Macintosh. It requires System 7.5 or later.

A minimal installation requires approximately 20 MB of disk space.
More space will be needed if you want to copy auxiliary material (such
as the on-line documentation) from the CD to your hard disk. You can
remove the “Examples” folder from the minimal installation to save
about another 3 MB of disk space.

The memory requirements for running MCL 4.0 are described in detail
in “MCL 4.0 Memory Requirements” on page 20. It is recomended that
a Macintosh running MCL 4.0 have at least 16 MB of RAM.

MCL 3.1

Macintosh Common Lisp 3.1 will run on any 68x-based Macintosh. It is
compatible with both System 6.x or 7.x, though versions System 7 are
highly recommended and may be required in the future.

A minimal installation requires approximately 15 MB of disk space.
More space will be needed if you want to copy auxiliary material (such
as the on-line documentation) from the CD to your hard disk.

The memory requirements for running MCL will vary with the version
of the Macintosh OS being used. It requires a minimum partition size of
between 3.5 and 4 MB.
18

Installation

The MCL software comes on a CD. You can install it directly from the
CD, or you can use the CD to create installation floppy disks for
installation on machines which do not include a CD-ROM drive.

You can only perform a minimal installation from floppy disks.

Installing MCL 4.0

To install MCL 4.0 directly from the CD, copy the “MCL 4.0” folder to
your hard disk. To install MCL 4.0 from floppies, create an MCL 4.0
folder on your hard disk by following the instructions for floppy disk
installation on page 22. Once the MCL 4.0 folder is on your hard disk,
move the following files and folders to their proper locations:

■ Aliases to the shared libraries “pmcl-kernel-4.0”, “pmcl-library-4.0”,
and “pmcl-compiler-4.0” may be placed in your Extensions folder.
This would allow your MCL-based applications to use them regardless
of where the applications are located. Otherwise, these libraries or
aliases to them must be in the same folder as the application when it is
launched.

If you are working with the “Demo Version” of MCL 4.0, you need not
worry about these shared libraries as they are built into the demo
version.

■ Some of the files in the “Library” folder are referenced at runtime and/
or compile-time by the MCL 4.0; by default, the “Library” folder is
expected to be in the same folder as the MCL 4.0 application.

■ MCL 4.0 uses the Macintosh Thread Manager to support multiple
processes. If your Macintosh does not have the Thread Manager
installed, you should copy the file “ThreadsLib” from the MCL 4.0
distribution to your Extensions folder and reboot before running MCL
4.0.

IMPORTANT: Only install this version of the Thread Manager if your
copy of the Macintosh OS does not already include it. System 7.5.3
includes the Thread Manager. To tell whether an older version of the
Macintosh OS already has the Thread Manager installed, start up MCL
4.0 and select the Processes command from the Tools menu. If the
dialog shows an “Initial” process but no “Listener” process, then your
Macintosh does not have the Thread Manager installed. You should
install it and reboot. Checking your Extensions folder for the presence
of a “ThreadsLib” file is not a reliable way to check for the presence
of the thread manager, as it may be included in the System file.
Chapter 1: Installing MCL 19

■ If you are upgrading from a previous version of MCL, you will need to
recompile your fasl files.

MCL 4.0 Memory Requirements

The memory required to run MCL 4.0 will vary, depending on whether
or not virtual memory is enabled. If virtual memory is enabled, it will
run in a somewhat smaller memory partition.

With virtual memory enabled, MCL 4.0 will run in a minimal partition
of 2.7 mb and be comfortable in a 4.8 mb partition. With virtual memory
disabled, MCL 4.0 will run in a minimal partition of 3 mb and will run
comfortably in a 5.1 mb partition. With virtual memory disabled,
another 3.5 megabytes of MultiFinder memory must be available after
MCL has been launched.

The reason for this difference is that the Mac OS “file-maps” static code
and data when virtual memory is enabled. The number of bytes in this
static code and data is effectively added on to the requested partition
size. File-mapping will also be applied to programmer code and data in
applications and Lisp environments created with save-
application.

In System 7.5.3 with virtual memory enabled, the size requirements
reported by the Finder are the amounts given in the size resource.
With virtual memory disabled, the requirements reported by the Finder
are the sum of the amounts given in the size resource, plus the size of
static code and data.

The MCL 4.0 size resource is set for a generous partition showing
approximately 4.8 mb with virtual memory and 5.1 mb without.

◆ Important: In starting up MCL 4.0, the Macintosh OS loads the MCL’s
shared libraries. If virtual memory is not turned on, these shared
libraries require approximately 3.5 megabytes of free space in the
Process Manager (Multifinder) zone. This is space that has not already
been allocated to MCL. For this reason, when running without virtual
memory you should not set MCL’s partition size to take up all the
remaining memory on your Macintosh. You should set its partition size
such that at least 3.5 megabytes will be left free. If there is not enough
memory for MCL 4.0 to load its libraries, MCL will display a dialog
informing you of this. This also holds for the “Demo Version” of MCL
4.0, with the built-in libraries.
20 Getting Started With Macintosh Common Lisp

Installing MCL 3.1

To install MCL 3.1 directly from the CD, copy the “MCL 3.1” folder to
your hard disk. To install MCL 3.1 from floppies, create an MCL 3.1
folder on your hard disk by following the instructions for floppy disk
installation on page 22.

If you are using a 68030-based Macintosh without virtual memory, you
should copy the file “PTable” from the MCL 3.1 folder to your
Extensions folder and reboot your Macintosh. This system extension
improves the performance of MCL’s ephemeral garbage collector when
running on 68030-based Macintoshes without virtual memory.

MCL 3.1 Memory Requirements

MCL 3.1 requires a memory partition of at least 3.9 MB. 5 MB or more
is recommended.
Chapter 1: Installing MCL 21

Creating Installation Floppies

If you have access to a CD-ROM drive but it is not directly attached to
the Macintosh on which you wish to install MCL, you install from
floppy disks by using self-extracting archive segments provided on the
MCL CD.

An installation of MCL 4.0 requires four disks and approximately 28
MB of free hard disk space. An installation of MCL 3.1 requires three
disks and approximately 27 MB of free hard disk space.

The archive segments are located in the “MCL Floppy Disks” folder on
the MCL CD. Each archive segment is stored in a separate folder within
this folder. To create floppy installation disks, simply copy each archive
segment folder to a floppy disk.

To install MCL on a hard disk using the newly created installation
floppies, use the following steps:

1. Insert disk #1.

2. Double-click on the self-extracting archive application.
After a brief pause, Compact Pro™ will ask you to show it the
“Final Segment” of the archive.

3. Eject disk #1.

4. Insert the last disk.

5. Select the last self-extracting archive segment and click on “Load”.

6. Compact Pro will ask where you want to put the MCL folder.

7. Select an appropriate location on your hard disk for Compact Pro
to put the folder, then click on “Extract”.

8. Insert each disk as Compact Pro requests it.

Disk #4 also contains a Compact Pro utility called “Extractor”. Use this
program if you want to get a few of the files out of the archive without
extracting the entire environment.

22 Getting Started With Macintosh Common Lisp

23

Chapter 2:

A Brief Tour of MCL

Contents

Overview of MCL / 24
Starting MCL / 24
Interacting with the Listener / 25

Evaluating expressions / 26
Working with the Listener / 27
The Listener and the Lisp Heap / 28
The Listener and text files / 29

The MCL editor, Fred / 30
Creating a Fred window / 30
Executing expressions in a Fred window / 31
Lisp-based editing / 32

Matching delimiters / 32
Auto-indentation / 34
Cutting and pasting with Emacs commands / 34
Executing your program / 34

Saving source code to a file / 35
Getting help on Fred commands / 35

Getting help on Listener commands / 37
Other Window Features / 37
Compiling files / 38

File compilation example / 38
What you’ve learned / 40

This chapter introduces the Macintosh Common Lisp environment. In this
chapter you’ll create a simple program and learn how to use the basic tools of
Macintosh Common Lisp.

Overview of MCL

MCL includes the best of traditional Lisp environments and of the
Macintosh. Because of this, if you have experience with either the
Macintosh or with other Lisp implementations, you’ll likely feel
immediately comfortable in MCL.

From the Macintosh side:

■ You work with multiple windows, menus, and other standard UI
elements.

■ You use an editor that supports the standard Macintosh editing
commands.

From the Lisp side:

■ You write programs in Common Lisp and use the Common Lisp Object
System (CLOS).

■ You interact with your program through a Listener window.

■ The editor is fully programmable and supports standard Emacs
commands.

■ At any time you can look at and edit the source code of any function,
class, or other object. You can look up a documentation string for any
definition.

■ You can debug your source code in many ways, including stepping
through it, tracing it, and inspecting it with an editable Inspector.

■ Your environment is fully programmable.

Starting MCL

If you followed the installation instructions in the previous chapter, you
now have a full version of Macintosh Common Lisp in a folder on your
hard disk. When you open this folder, inside you will see a set of other
folders and the MCL application. The application will be called either
“MCL 4.0” or “MCL 3.1,” depending on which version you are using.

To start MCL, double-click on the MCL application. When MCL starts
up, it loads the Lisp kernel and initializes the object system.
24 Macintosh Common Lisp Reference

If a Lisp source-code file named “init.lisp” is present in the same folder
as MCL, it is loaded. If a compiled init file is present (“init.pfsl” in MCL
4.0 or “init.fasl” in MCL 3.1), it will also be loaded. If both a source code
file and a compiled file are present the newer one is loaded. You can use
the init file to load customizations, preferences, additional libraries, and
so on.

After MCL is finished starting up, you will see the MCL menubar at the
top of the screen. In the middle of the screen you see a Listener window
containing a welcome message.

Figure 2-1 The MCL Menubar

◆ Note: Starting up MCL 4.0 under virtual memory may take from
several seconds to several minutes. The length of time depends on the
model of machine and Macintosh OS version. Long delays are due to
an interaction between the CFM subsystem and virtual memory
subsystem of the Macintosh OS. Since this interaction occurs before any
MCL code is run, we are unable to display a progress indicator or
splash screen until it is complete.

Interacting with the Listener

When you are running MCL, the Lisp heap consists of a variety of
objects: classes, functions, symbols, arrays, user-interface objects, etc.
Functions and special forms are used to perform operations on these
objects. Definitions are used to create and define the structure of these
objects.

The Listener is a window into which you can type Lisp expressions for
immediate execution. These expressions may create new objects and/
or they may interact with existing objects. In either case, the result of
executing the expression is printed as a return value in the Listener.

The Listener corresponds to a process in the MCL runtime. The process
is in a loop, called a read-eval-print loop. The loop reads an expression,
evaluates it, and then prints the result. In the case of MCL, evaluation
usually consists of compiling the expression and then executing the
result. However, the compiler is fast enough that the Listener still gives
the impression of being an evaluator window.
25

There can be multiple Listeners in MCL. Each one will correspond to its
own process. (Your program can also have additional processes which
do not correspond to any Listener.) For now, we are just going to be
using one Listener, and one process.

Figure 2-2 A Listener window

You’ll recognize the Listener from its name in the title bar, “Listener,”
and from the question mark prompt. Whenever you see this question
mark, the Listener is ready to read input.

The Listener is natural and straightforward to use. Text you enter into
it appears in boldface. Text printed back appears in normal type.
This convention is carried over to the examples given in this manual.
? "Hello, world!" ;This is what you type.
"Hello, world!" ;This is MCL’s response.

Evaluating expressions

When you type a complete expression in the Listener and press Return,
Macintosh Common Lisp immediately evaluates the expression and
returns the result.
? (+ 10 20 30)

60

? (aref #(a b c d) 0)

A

? "Simple String"

"Simple String"

Every kind of Lisp expression has its own rules for evaluation. The first
two examples given above are function calls, which evaluate to the
result of calling the function on the arguments. The third example is a
string constant. String constants (like other constants) evaluate to
themselves.
26 Macintosh Common Lisp Reference

Figure 2-3 A simple Listener interaction

You can also type more complex expressions into the Listener. Many
expressions will contain nested subexpressions. It is also common to
test out function and class definitions in the Listener.

? (+ 25 (* 10 10) (* 5 5))

150

? (defun factorial (n)

 (if (= n 0)

 1

 (* n (factorial (- n 1)))))

FACTORIAL

? (factorial 10)

3628800

➠ Before going on, try out using the Listener by typing in some simple
expressions and seeing how they evaluate. (If you get into any error
situations, you can always get out by typing command-period.)

When an evaluation is in progress, the About Macintosh Common Lisp
command on the Apple menu is preceded by a diamond and the
Listener minibuffer shows the word “busy.”

Working with the Listener

The Listener is designed to make interacting with the Lisp environment
very easy.

■ Pressing Return when the insertion point is not in the last line of text in
the Listener causes the insertion point to move to the last line. If there
is a selection, the selection is copied to the last line. If there is no
selection, the text surrounding the insertion point moves down if it has
been entered by the user, and is ready to execute.

■ Pressing Enter is equivalent to pressing Return twice. It performs both
copy-down and execution.
27

■ Pressing Control-Return causes a carriage return to be inserted. Use
Control-Return when you want to reformat text in the Listener without
performing copy-down or execution.

■ Pressing Control-G creates a new input line without executing the
current input line. The canceled input line is not erased, and you can
use it later.

? Here is an input line ;now press Control-G

? ;you have a new input line

■ Pressing Option-G moves the previous input line to the bottom of the
text in the Listener. Each time you press this key combination, a
previous input line is moved to the bottom of the text in the Listener.

■ Pressing Control-Option-P in the Listener moves the cursor to the
previous input line. (Press the Control, Option, and P keys all at once
to give this command.)

■ Pressing Control-Option-N in the Listener moves the cursor to the next
input line.

■ The last result returned by the Listener is bound to the variable *. For
example,
? (concatenate 'string "Hello" " Dolly")
"Hello Dolly"
? (concatenate 'string "Well " *)
"Well Hello Dolly"

■ The Listener also supports all the standard Emacs commands
supported by the MCL editor, as described in “The MCL editor, Fred”
on page 30.

■ Of course, standard Macintosh commands such as cut, copy, and paste
also work in the Listener. And at any time you can save the text of the
Listener into a text file.

■ To get an online listing of Listener editing commands, press Control–
question mark when you are in the Listener, or choose Listener
Commands from the Tools menu.

The Listener and the Lisp Heap

You can close the Listener at any time. This has the effect of disposing
of the text in the Listener. However, it does not undo any side-effects of
the interactions you’ve had in the Listener. Those side-effects were
performed on the global state of the Lisp heap, and remain even after
the Listener they were entered in is closed.

Similarly, when you save a Listener, you are simply saving text. You are
not saving a snapshot of the state of your current programming session.
(It is possible to save snapshots with a different technique, as described
in “Preserving programming sessions” on page 47.)
28 Macintosh Common Lisp Reference

To create a new Listener at any time (whether or not there is already a
Listener on the screen), choose New Listener from the File menu.

The following example shows that side-effects created through a
Listener interaction persist, even after the Listener is closed.

➠ Define a variable
? (defvar new-variable 100)
NEW-VARIABLE
? new-variable
100 ;a variable evaluates to its value
? (+ new-variable 50)
150

➠ Close the Listener window and create a new one.

➠ Use the variable in the new Listener window. It’s still there.
? (* new-variable new-variable)
10000

If you want to reset the Lisp heap and start over again, you do not do
this by closing the Listener, but by quitting and restarting MCL.

The Listener and text files

The Listener is useful for immediate interactions with Lisp. However, it
is not recomended for writing source code which you intend to keep.
While it is possible to save the text of the Listener, this text includes not
only your code, but also values returned by MCL, as well as additional
printed information such as error messages and prompts.

You edit source code which you wish to keep in Fred windows. Fred is
the MCL editor, described below. Fred stores source code as Macintosh
text files with additional font information. Most source code is written
in Fred windows, or written in the Listener and then copied into a Fred
window for further editing into a source code file.

When you want to use the source code, you simply open the source file
and edit or execute the code, as described in the following sections.
29

The MCL editor, Fred

Macintosh Common Lisp includes a powerful editor, Fred. Based on
Emacs, Fred (“Fred Resembles Emacs Deliberately”) includes the usual
Macintosh editing features, such as multiple windows and mouse-
based editing. In addition it includes a sophisticated set of features
designed specifically for editing Lisp. Among these are parenthesis
matching, smart indentation, and Lisp expression-oriented keyboard
commands.

Moreover, because Fred is written in MCL, it is fully programmable:
you can change its keymappings, change the behavior of existing
commands, and add new commands.

In the next few sections, you will learn how to do the following:

■ Create a new Fred window.

■ Edit text in the window.

■ Execute expressions in the window.

■ Navigate through the text of the window.

■ Save your work to a file on disk.

In doing this, you’ll create a dialog box that asks your name and prints
it out, along with a greeting.

Creating a Fred window

You create a Fred window by choosing the New or Open… command
from the File menu.

➠ Open a new Fred window.

Choose the New command from the File menu.

You see two windows on the screen, your original Listener and a new
Fred window. The new Fred window becomes the active window.
30 Macintosh Common Lisp Reference

Figure 2-4 A Fred window and a Listener

A Fred window displays an editor buffer, which contains a copy of the
text you’re editing. If the window is new, it doesn’t yet correspond to
a file on disk; the only copy is in the buffer. Otherwise the buffer
contains a copy of the text from the file. When you save the window, its
contents are copied to the file.

To enter text in your new Fred window, simply type.

➠ Type "Hello, world!" and press the Return key.

Note that when you enter text in the window, a small cross appears in
the title bar of the window. This indicates that the file has been
modified since it was last saved.

Unlike text entered in the Listener, text entered in a Fred window is not
immediately executed. However, you can easily execute the expression
you have just typed.

Executing expressions in a Fred window

There are three ways to execute code from a Fred Window:

■ If you wish to execute all the expressions in the window, you can select
the Execute All command from the Lisp menu.
31

■ If you wish to execute only a portion of the expressions in the window,
you can select the portion and choose the Execute Selection command
from the Lisp menu.

■ If you wish to execute a single expression, you can place the cursor at
the start or end of the expression and choose the Execute Selection
command from the Lisp menu, or press the Enter key.

When you execute code from a Fred window, the result of the last
expression executed is printed in the Listener.

You can also execute all the code in a file without opening an editor
window on the file. To do this, you load the file by choosing the Load
command from the File menu.

➠ Select the string "Hello, world!".
The entire expression is highlighted.

➠ Execute the expression by choosing “Execute Selection” or pressing
Enter.

The results of an execution always appear in the Listener, where you
should see "Hello, world!"

Lisp-based editing

Fred includes a number of features that make it easier to read, edit, and
navigate through Lisp code.

Matching delimiters

When the cursor is placed next to an expression delimiter such as a
double-quote or a parenthesis, Fred will blink the matching delimiter,
showing you the extent of the expression.

➠ Place the cursor next to the closing double-quote of the string entered
in the Fred window.
Notice that the matching double-quote blinks.

➠ Add the following code to the Fred window, below the string.
(get-string-from-user
 "Please type in your name.")
Notice that when the cursor is at the closing parenthesis, the opening
parenthesis blinks. If you move the cursor to the opening parenthesis,
the closing one will blink.

You can navigate by expression using a number of different Fred
commands. For example, pressing Control LeftArrow will move you to
the left by one Lisp expression; pressing Control RightArrow will move
you to the right by one Lisp expression.
32 Macintosh Common Lisp Reference

➠ Place the cursor at the end of the buffer, and press Control LeftArrow
twice.
The cursor should now be at the beginning of the buffer.

You can select an entire expression by double-clicking on one of the
delimiters of the expression, or by pressing Control-Option Space when
the cursor is next to one of the delimiters of an expression.

➠ Position the cursor over the closing parenthesis and double-click.
The entire expression is highlighted. If this were an expression within
another expression, only the inner expression would be highlighted.

➠ Execute the selected expression by choosing “Execute Selection” or
pressing Enter.
MCL executes the expression. The function get-string-from-user
displays a dialog box with the specified prompt.

Figure 2-5 Executing an expression from a Fred window

➠ Type your name in the highlighted box and press Return.
MCL returns your name as a string in the Listener window. This string
is the result of the call to get-string-from-user.
33

Auto-indentation

Fred can automatically indent your Lisp source code for you.

➠ Edit the call to get-string-from-user so that the value it returns
is saved.
Embed the call inside a variable definition:
(defvar my-name
 (get-string-from-user
 "please enter your name"))

Fred can auto-indent your code in one of three ways:

■ If you press Control-Return rather than Return, Fred will auto-indent
the new line.

■ If you select a block of text and press Tab, Fred will auto-indent all the
text in the selection.

■ If you place the cursor on a single line and press Tab, Fred will auto-
indent the line.

Cutting and pasting with Emacs commands

In addition to the standard Macintosh commands for cutting and
pasting, Fred supports a number of Emacs commands for cutting and
pasting. The Fred commands have two advantages over the Macintosh
commands:

■ They provide fine grain control over the text which is cut. For example,
with a single keystroke you can cut a word, line, or expression.

■ They store multiple pieces of cut text. Whereas the Macintosh
clipboard can hold only a single item, the Fred kill-ring can hold any
number of pieces of text.

➠ Move to the start of the line containing "Hello, world!".

➠ Press Control k
Control k is “kill line”. It “kills” (removes) text from the cursor to the
end of the line and places it on the kill ring. Subsequent Control k’s will
kill following lines.

➠ Type (format nil

➠ Press Control y
Control y “yanks” (pastes) the top item from the kill ring into the editor
window. The top line of the window should now read
(format nil "Hello, world!"

➠ Continue editing.
When you are done, the top line should read
(format nil "Hello ~a" my-name)

Executing your program

You now have a file with two expressions in it. It should look like this:
34 Macintosh Common Lisp Reference

(defvar my-name
 (get-string-from-user
 "Please type in your name."))

(format nil "Hello, ~A!" my-name)

Now try it out.

➠ Execute the program.
Choose the Execute All command from the Lisp menu.

Saving source code to a file

If you want to use this source code later, you must save it to a file.

➠ Choose the Save command from the File menu or press Command-S.
MCL will bring up the standard put-file dialog.

➠ Type the name “Hello Dialog.Lisp”. To accept the name, either
press Return or click the Save button.

Getting help on Fred commands

As you have seen, there are a great number of Fred commands for a
great number of purposes. Fred commands are actually Lisp functions
bound to keystrokes. To help you find Fred commands you need, their
is a Fred Commands window which lists all these functions and their
corresponding keystrokes. To bring up the Fred Commands window
choose Fred Commands from the Tools menu or press Control-/ or
Control-? when the top window is a Fred window.
35

Figure 2-6 The Fred commands window

There are two ways to use the Fred Commands window. You can enter
a likely substring of a command function name, and the window will
display all the commands that include that substring in their name. Or,
you can enter a keystroke or partial keystroke, and the window will
display all the commands that use that keystroke or partial keystroke.

For example, suppose that you want to find all the Fred commands that
deal with expressions.

➠ Choose Fred Commands from the Tools menu.
The Fred Commands window appears.

➠ Search for commands that contain the string “exp”.
Type “exp” into the text field in the upper-left of the window. MCL
matches the string as you type it, character by character. The matching
is not case-sensitive.

The scrolling list in the middle of the window displays all the
commands which match the given criteria. On the left of the list is the
name of the function which performs the command. On the right is the
keystroke which invokes the command. In the right hand column, “c”
stands for “control” and “m” stands for “meta” (the option key).

You can also narrow your search by keystroke.

➠ Move the insertion point to the text field in the upper right of the
Fred Commands window.

➠ Hold down the control key and the letter “a.”
Note that a much smaller number of commands are now shown: only
those which contain “exp” in their command name, and which are
invoked through a keystroke that includes control and “a.”
36 Macintosh Common Lisp Reference

Getting help on Listener commands

A few commands work only in the Listener. The Listener Commands
window lists all the Listener commands that differ from standard Fred
commands, and their command keystrokes. To show the Listener
Commands window, choose Listener Commands from the Tools menu,
or press Control-/ or Control-? when the top window is a Listener
window.

Other Window Features

MCL has some extensions to the standard Macintosh window features:

■ Pressing Command-L makes the Listener the frontmost window.

■ Pressing the Option key and clicking the title bar of any window except
a modal dialog makes that window the rearmost window.

■ Holding down the Option key when closing a window closes all the
windows of that class.

■ Holding down the Control key when closing a window hides the
window. Its title appears in italics in the Windows menu. Selecting the
menu item shows and selects the hidden window.

■ Pressing Control-Option-L selects the second window. Pressing this
keystroke repeatedly swaps the top two windows. This feature works
only in Fred windows and in the Listener.

■ Pressing Control-Option-number followed by Control-Option-L selects
the numberth window. This feature works only in Fred windows and in
the Listener.
37

Compiling files

Earlier in this chapter we introduced the read-eval-print loop and
explained that MCL actually compiles code entered into the Listener.
Because the compiler is fast and you can recompile individual
definitions, there is no noticeable delay.

Lisp source code is saved in text files. That is, the text of the definitions
and other expressions is saved. The compiled forms of the expressions
are not saved. When you restart Lisp and open the file, you need to
recompile the functions in the file before you can use them.
Recompiling can take some time when you are working on a large
project.

To avoid the need to recompile files every time you restart Lisp,
Macintosh Common Lisp provides a file compiler. The file compiler
takes a source code file (that is, a text file of Lisp expressions), compiles
the file, and saves the compiled version in another disk file. This
compiled file, called a fasl file, can be loaded quickly into Lisp.

You can compile files by choosing the Compile File… command from
the File menu. When you choose this command, MCL displays the
choose-file dialog box, allowing you to choose a text file to compile.
When you have selected a file, you are prompted for a name under
which to save the file. The default is the name of the original text file,
but with a different extension. The extension for fasl files in MCL 4.0 is
“.pfsl”. The extension for fasl files in MCL 3.1 is “.fasl”.

You can also compile files by using the Common Lisp function
compile-file.

Just as you can recompile individual definitions, you can recompile
individual files. You do not need to recompile all the files in your
project when only one of them has changed.

File compilation example

We’ll make a sample program a little bit larger, and then we’ll compile
it to a file.

➠ Surround the call to format with a call to message-dialog.
The resulting line of code should look like this:
(message-dialog (format nil "Hello, ~A!" my-name))
38 Macintosh Common Lisp Reference

Notice that when you type the space after the name of the function
“message-dialog”, a message appears in the bottom of the Fred
window. This message area is called the mini-buffer. When you type an
open-parenthesis followed by the name of a function followed by a
space, Fred displays the argument list of the function in the mini-buffer.

If you want to see what the function message-dialog does, you can
get the documentation string for it. To do this, select the text
“message-dialog” in the window, or place the cursor inside the text,
and press Control-x Control-d. This is the MCL command for bringing
up the documentation window.

Figure 2-7 The documentation window

➠ Replace the variable definition with a function definition, including
a local variable binding.
The resulting code will look like this:
(defun say-hello ()
 (let ((my-name (get-string-from-user
 "Please type in your name.")))
 (message-dialog
 (format nil "Hello, ~A!" my-name))))

➠ Compile the function.
You do this by selecting it and choosing Execute Selection from the Lisp
menu.

➠ Now try out the function.
Type (say-hello) in the Listener and press Return.

We’ve now defined a Lisp function which asks the user for their name,
and then displays the name along with a greeting in a dialog box. If we
want to use this function in a later Lisp session, we’ll need to load it
after restarting Lisp. To make that loading faster, we’ll compile the file
containing the function definition.

➠ Save the file.
Choose the Save command from the File menu.
39

➠ Compile the file.
Choose the Compile File… command from the File menu. MCL will
prompt you to choose a file to compile. When you’ve chosen, it will
prompt you to choose a name for the compiled file. Use the name it
suggests for the compiled file.
MCL will then compile the file.

➠ Quit and restart MCL
Choose the Quit command from the File menu, or call the quit
function from the Listener.

➠ Load the file containing the function you’ve defined.
Choose the Load from the File menu. You will be prompted to choose
a file to load. You can choose either the source code file or the compiled
file. In general, compiled-files load much more quickly (though with a
file of this size, it doesn’t make much difference).

➠ Try out the function, to make sure it loaded properly.
Type (say-hello) in the Listener and press Return.

➠ Go back to the source code of the function.
Position the cursor inside the text “say-hello” and press Option-
Period. MCL will open the source code file containing the definition (if
it is not already open) and it will scroll to the definition.

What you’ve learned

You’ve learned that there are two basic windows in the Macintosh
Common Lisp environment, the Listener and the editor. First you
created a Listener window and executed code in it. Then you added a
Fred window and edited source code in it. You created a small program
in the window, executed it, and saved it to a file. In writing this
program, you’ve learned how to put up simple message and prompt
windows, and how to format a simple message. You’ve used Fred
commands to navigate, indent, cut and paste text, find documentation
of functions, and go to the definition of functions. Finally, you’ve
compiled a file of source code, and loaded a compiled file.
40 Macintosh Common Lisp Reference

41

Chapter 3:

The Application Framework

Contents

Overview / 42
Windows and views / 42

Creating a window / 42
Window init-keywords / 43

Views and subviews / 43
Adding a button / 44
Adding an editable text item / 44
Retrieving the text from an editable text item / 45

Creating a complex window / 45
Menus / 46

Adding a menu and a menu-item / 46
The interface toolkit / 47
Preserving programming sessions / 47
What you’ve learned / 48

Because Macintosh Common Lisp provides major portions of the Macintosh
Toolbox as high-level Lisp objects, it is ideal for programming the Macintosh
computer.

In this chapter, you’ll learn how to create windows, dialog-items, menus, and
menu-items. You’ll also learn how to save snapshots of a Lisp session.

Overview

Macintosh Common Lisp includes a set of class libraries which provide
high-level access to the Macintosh user interface. The classes and
methods in these libraries make it easy to create an interface for your
program without worrying about the low-level details of system calls.
Most importantly, the class libraries are safe. They provide crash-free
access to Macintosh UI.

In the last chapter, we used two built-in dialog boxes: a message dialog
and a string-query dialog. In this chapter, we’ll show how to build your
own dialogs and also how to put up menus. We’ll also describe some
ways to customize your MCL environment.

Complete details on creating windows, menus, and other UI elements
are given in the MCL reference.

Windows and views

MCL provides a set of classes for displaying windows, dialog boxes,
and common items in windows such as static-text dialog items,
editable-text dialog items, buttons, check boxes and radio buttons.

Creating a window

It’s easy to create windows in MCL.

➠ Create a window.
Enter the following code in the Listener, and press Return.
(make-instance ’window)

➠ Set the window’s title.
Enter the following code in the Listener, and press Return.
(set-window-title (target) "Echo")

The function target returns the second window. It makes it easy to
use the Listener to operate on another window.

➠ Set the window’s size.
Enter the following code in the Listener, and press Return.
(set-view-size (target) #@(240 180))
42

Most objects which are displayed on the screen are views. In particular,
windows and items displayed in windows are views. One property
shared by all views is a size. Because of this, we use the function set-
view-size to set the size of a window. The window class has inherited
this function from the view class. The syntax #@(i1 i2) is used to
indicate point literals. In this case, we are saying the width (or
horizontal coordinate) should be 240, while the height (or vertical
coordinate) should be 180.

➠ Check the window’s title.
Enter the following text in the Listener, and press Return.
(window-title (target))

Just as there are functions for setting the attributes of windows and
other UI objects, there are functions for retrieving their attributes.

Window init-keywords

We’ve seen that it’s possible to interactively create, modify, and inspect
a window interactively. However, most of the time you’ll want to create
a window with the chosen attributes preset. You can do that by
specifying the attributes as keyword arguments to make-instance
when you create the window.

➠ Create a window with preset attributes.
Enter the following text in the Listener, and press Return.
(make-instance 'window
 :window-title "Echo"
 :view-size #@(240 180))

Views and subviews

The items displayed inside a window are the subviews of the window.
In the simplest cases, there is only one level to this view hierarchy: the
window is the outermost view, and it contains subviews. However, it is
possible to have deeper levels of nesting. Subviews in the window can,
in turn, have their own subviews, etc.

Events such as mouse clicks and keystrokes are handled by the
window, which often passes control on to an appropriate subview.
Chapter 3: The Application Framework 43

Adding a button

➠ Add a subview to the window.
Enter the following text in the Listener, and press Return.
(add-subviews (target)
 (make-instance 'button-dialog-item
 :dialog-item-text "Beep"
 :dialog-item-action
 #'(lambda (self)
 (declare (ignore self))
 (beep))))

Notice that a button has been added to the window, with the specified
text. When you press the mouse on the button, the button highlights,
and tracks the mouse movement appropriately. When you release the
button, the action is run.

In this case, the action is an anonymous function. That’s the meaning of
the expression beginning with “#’(lambda…”. The lambda
expression creates a function of one argument, self, it ignores that
argument, and it then calls the function beep. The anonymous function
is stored as the action-function of the dialog item. It is called when the
button is clicked.

When a button’s action-function is called, the button itself is passed as
an argument. That way the function can find out what dialog it is in, etc.
In this case, we do not need to use that information. That’s why we
declare that we are ignoring the argument. If the lambda expression did
not include that declaration, the compiler would issue a warning about
an unused argument.

Adding an editable text item

Another common type of subview is an item that allows the user to
enter and edit text.

➠ Add an editable-text item to the window.
Enter the following text in the Listener, and press Return.
(add-subviews (target)
 (make-instance
 'editable-text-dialog-item
 :view-size #@(160 16)
 :view-nick-name 'visitor))

Now if you select the window, you can edit text in the newly added
subview.

When we created the editable-text dialog item, we specified a view-
nick-name for it. This allows us to locate the view later, if we want to
perform some operation on it.
44 Getting Started With Macintosh Common Lisp

➠ Set the font of the editable-text item.
Enter the following text in the Listener, and press Return.
(set-view-font (view-named 'visitor (target))
 "New York")
Now when you type in the editable-text item, the typing will be
displayed in the font “New York”, rather than the default “Chicago”
font.

Retrieving the text from an editable text item

An editable-text dialog item is only useful if there is a way to retrieve
the text that has been entered into it. We’ll now add another button to
our window which does just that.

➠ Add a text-retrieval button to the window.
Enter the following text in the Listener, and press Return.
(add-subviews (target)
 (make-instance 'button-dialog-item
 :dialog-item-text "Echo"
 :dialog-item-action
 #'(lambda (button)
 (let* ((text-item (view-named 'visitor button))
 (text (dialog-item-text text-item)))
 (format t text)))))

Creating a complex window

As noted above, it is possible to specify the attributes of a window when
the window is created. The subviews can be part of these attributes.
Combining the snippets of code we created in the Listener into a single
function, we get the following. When this function is called, it displays
a window containing a button and an editable-text dialog item. When
the button is pressed, it retrieves the text from the editable-text dialog
item and displays it in the Listener.
(defun make-echo-window ()

 (make-instance 'window

 :window-title "Echo"

 :view-size #@(240 40)

 :view-subviews

 (list

 (make-instance 'button-dialog-item

 :dialog-item-text "Echo"

 :dialog-item-action

 #'(lambda (button)

 (let* ((text-item (view-named 'visitor button))
Chapter 3: The Application Framework 45

 (text (dialog-item-text text-item)))

 (format t text))))

 (make-instance 'editable-text-dialog-item

 :view-size #@(160 16)

 :view-nick-name 'visitor))))

➠ Define and test the function.
Create a new Fred window, enter the definition in the window, save
the window, and compile the function. Then try calling the function
from the Listener.

Menus

Just as it’s easy to create windows and views with MCL, it’s also easy to
create menus and menu-items.

You may want to create menus and menu-items as part of creating an
entirely new menubar for your application. You may also want to add
new menus to the existing menubar, or add new menu-items to existing
menus. This is one way to customize your MCL environment. Because
MCL’s built-in menus are written in MCL, they behave in just the same
way as any menus you might add.

Adding a menu and a menu-item

To add a menu to the menubar, we create an instance of the class menu,
and install it. Because we will want to perform other operations on this
menu, we will store it in a variable when we create it.

➠ Create a menu and add it to the menubar.
Execute the following expressions in the Listener:
(defvar *custom-menu*
 (make-instance 'menu
 :menu-title "Custom"))
(menu-install *custom-menu*)

➠ Add a menu-item to the new menu.
Execute the following expression in the Listener:
(add-menu-items
 custom-menu
 (make-instance 'menu-item
 :menu-item-title "Echo Window"
 :menu-item-action 'make-echo-window))
46 Getting Started With Macintosh Common Lisp

That’s all there is to it. You’ve now added a menu and a menu-item to
your Lisp environment. Try selecting the menu-item, to see that it
works.

The interface toolkit

In the previous sections, you created windows and menus by writing
the code to generate them by hand. It is not always necessary or
desirable to do so.

MCL comes with a tool for creating user interfaces graphically. It is
called the “Interface Toolkit”, or “IFT” for short. It comes in source code
form, with instructions, and is located on your MCL CD. It allows you
to build windows, subviews of windows, menus and menu-items
graphically, and then generates the source code for these UI elements
automatically. It can even be extended to handle new kinds of UI
elements that you design.

Preserving programming sessions

When you program in MCL, you are creating objects: functions, classes,
and other instances. You are building up state in your Lisp
environment.

At times it is desirable to save a snapshot of your environment for later
resumption. It may be that reproducing a particular state is very time
consuming, either because it involves loading many files of Lisp code,
because it requires performing other lengthy computations, or perhaps
because your environment has gotten into an anomalous state which
you want to examine later.

MCL includes a facility for saving snapshots—also known as images—
of a running Lisp session. These snapshots can be restarted at a later
time. They start up just about as quickly as starting up a new Lisp
system.
Chapter 3: The Application Framework 47

To save an image, just call the function save-application. This
function takes one required argument and a number of keyword
arguments. The required argument is a pathname. It closes any open
windows (these cannot be saved), writes an image to disk at the
selected pathname, and then exits to the Finder. The saved image is a
stand alone application. It can be restarted by double-clicking it, just
like any other stand alone application.

◆ Note: To restart an image created in MCL 4.0, the image must have
access to MCL’s three libraries, as described in the installation
instructions. These libraries must be in the same folder as the image, or
they must be in the Extensions folder, or aliases to them must be in one
of these folders.

◆ Note: If you save an image with the same signature as MCL (the
default), then double-clicking on an MCL file in the Finder may launch
the new image, or it may launch MCL. The choice is made by a caching
mechanism in the Finder. To avoid confusion, you may wish to save
images with a different signature, or else not launch MCL by double-
clicking MCL files.

A complete description of save-application is given in the MCL
Reference.

The functionality of save-application is also available through the
Save Application… and the Extensions/Save Image… commands on
the Tools menu.

What you’ve learned

You’ve created a window and interactively added dialog-items to it.
You saw how all the steps of initializing a window can be performed
when the window is first created. You customized your environment
by adding a menu with menu-item to the menubar. Finally, you learned
how to save out Lisp images, to preserve entire programming sessions
for later resumption.
48 Getting Started With Macintosh Common Lisp

49

Chapter 4:

Debugging

Contents

MCL’s multiple debugging facilities / 50
Documentation commands / 50

Source code / 50
Argument lists / 51
Documentation / 52

Introspection commands / 53
Free space / 53
Finding symbols / 53

The apropos function / 53
The apropos window / 54

Examining objects with the Inspector / 55
Inspecting an object with inspect / 56
Inspecting objects from other tool windows / 57

Errors and Break Loops / 59
Reading an error message / 59
Recovering or aborting / 60

Aborting / 60
The break loop / 62
The stack backtrace / 64
Processes / 65

The stepper / 66
Trace / 67
What you’ve learned about debugging / 68

This chapter describes some of the facilities in MCL for accessing object
information and documentation, inspecting objects, and debugging programs
and processes.

MCL’s multiple debugging facilities

Macintosh Common Lisp provides many ways for you to examine and
debug functions, and source code, and to inspect the state of your Lisp
system:

■ Documentation commands.
A set of Lisp functions and Fred commands give you access to the
source code, documentation strings, and argument lists of functions
and other objects.

■ Introspection commands.
A set of Lisp functions, Fred commands, and menu commands provide
information on the state of your Lisp system (such as the amount of
room available) and allow you to inspect objects and follow links
between objects.

■ Debugging tools.
A set of tools allow you to monitor functions and single-step through
functions, examine stack backtraces, and correct programs and restart
from error situations.

Documentation commands

The documentation commands give you access to source code,
argument lists, and documentation strings for your definitions as well
as many built-in definitions.

Source code

When definitions are compiled and the value of the global variable
record-source-file is true, the source file from which the
definition was compiled is remembered. You can later navigate from
the symbol that was defined (i.e. the class name, function name,
variable name, etc.) to the source code.

The default value of *record-source-file* is true.

There are three ways to retrieve the source code of a definition:

■ By using the function edit-definition, which takes a symbol as its
first argument.
50

■ By using the Fred command Option-Period, when the cursor is in a
symbol or when a symbol is selected. (This command is often called
“meta-point” or “meta-dot.”)

■ Through the inspector, the stack backtrace, and other graphical tools.

In all cases, if the source code information of the definition was
recorded, the source code file will be opened and scrolled to the
definition.

In some cases, there will be multiple definitions for a single symbol. For
example, there may be both a class and a function defined with the
same name, or there may be many method definitions on the same
generic function. In these cases, you are presented with a list of
definitions and prompted to choose one.

Argument lists

You can retrieve the argument lists of compiled functions. Depending
on how the functions were compiled and loaded into the Lisp
environment, these argument lists may or may not contain the original
argument names. If they do not contain the original names, they will
still show the correct number and types of arguments, along with
automatically generated names.

When working interactively, the names of arguments will be
remembered if the value of the global variable *save-local-
symbols* or of the global variable *save-definitions* is true.
When loading functions from fasl files, the names of arguments will be
remembered if the value of the global variable *fasl-save-local-
symbols* or of the global variable *fasl-save-definitions* was
true when the fasl files were compiled. The default value of all these
variables is false.

There are four ways to retrieve the argument list of a function:

■ By using the function arglist, which takes a symbol as its first
argument. This function returns the argument list of its argument, and
also returns a second value describing how it computed the argument
list.

■ By using the Fred command Control-x a, when the cursor is in a symbol
or when a symbol is selected. This will cause the argument list of the
function associated with the symbol to be displayed in the minibuffer
of the current Fred window.
Chapter 4: Debugging 51

■ If *arglist-on-space* is true, then typing an open parenthesis
followed by the name of a function followed by a space will cause the
argument list of the function to be displayed in the minibuffer of the
current Fred window. The default value of *arglist-on-space* is
true.

■ The inspector displays the argument lists of functions when they are
inspected.

Documentation

Many built-in definitions have associated documentation. In addition,
your own definitions can include documentation strings. These
documentation strings will be returned when the definition is compiled
only if the value of the global variable *save-doc-strings* is true.
The default value of this variable is false.

The following function definition includes a documentation string. The
exact placement of the documentation string varies among different
types of definitions. Check the Common Lisp specification for details.
(defun fact (number)
 "Returns the factorial of a number."
 (if (= 0 number) 1
 (* number (fact (- number 1)))))

There are three ways to retrieve the documentation of a definition:

■ Through the function documentation, which takes a symbol as its
first argument and a documentation type as its second argument. It
returns the documentation string of that type for the symbol if one
exists. The second argument should be function or type. See the
Common Lisp documentation for details.

■ By using the Fred command Control-x Control-d, when the cursor is in
a symbol or when a symbol is selected. This will cause the
documentation associated with the symbol to be displayed in a
documentation window.

■ Through the Get Info window or the Inspector, available through the
Tools menu.
52 Getting Started With Macintosh Common Lisp

Introspection commands

A set of Lisp functions, Fred commands, and menu commands provide
information on the state of your Lisp system (such as the amount of
room available) and allow you to inspect objects and follow links
between objects.

Free space

The Common Lisp function room prints out information describing the
free space available in Lisp. This function takes an optional argument,
true or false, which can be used to control the level of detail in the space
report.

Finding symbols

The apropos facility is used to search through the space of symbols for
symbols which contain a particular substring. This function is available
both through a Common Lisp function and as a menu command.

The apropos function

The Common Lisp function apropos takes a symbol or string as its
argument and prints out all symbols known to MCL that contain the
symbol or string. A package may be supplied as an optional second
argument. If supplied, only symbols from the specified package are
included in the print-out.

Here is an example of the use of apropos, in which it is used to find every
symbol that contains the string FACT. Notice that it brings up some constants
as well as the function you’re looking for.
Chapter 4: Debugging 53

? (apropos 'subview)
 ADD-SUBVIEWS, Def: STANDARD-GENERIC-FUNCTION
 DO-SUBVIEWS, Def: MACRO FUNCTION
 MAP-SUBVIEWS, Def: STANDARD-GENERIC-FUNCTION
 :ORDERED-SUBVIEWS, Value: :ORDERED-SUBVIEWS
 CCL::ORDERED-SUBVIEWS, Def: STANDARD-GENERIC-FUNCTION
 CCL::REMOVE-ORDERED-SUBVIEW, Def: FUNCTION
 REMOVE-SUBVIEWS, Def: STANDARD-GENERIC-FUNCTION
 SUBVIEW
 SUBVIEWS, Def: STANDARD-GENERIC-FUNCTION
 :VIEW-SUBVIEWS, Value: :VIEW-SUBVIEWS
 VIEW-SUBVIEWS, Def: STANDARD-GENERIC-FUNCTION

The apropos window

The apropos window is available through the Apropos… command on
the Tools menu.

Figure 4-1 The apropos window

The apropos window provides access to the apropos function with a
number of additional options. You can restrict the types of symbols
returned (i.e. only symbols with function definitions, class definitions,
etc. will be returned, if so specified); you can specify two strings and
only view symbols which contain both, either of, or one but not the
other of the strings.
54 Getting Started With Macintosh Common Lisp

Once you have found a symbol, you can select it and then perform a
number of different actions on it, such as inspecting it, locating its
source code, documentation string, etc. If you are performing one of
these actions on a generic function, you can redirect it to a method on
the generic function by choosing the specializers and/or qualifiers of
the method you wish to operate on.

Examining objects with the Inspector

The Inspector lets you look quickly at any component of an object. It
provides a route to the source code of the object. It even lets you edit
many of the attributes of an object that is being inspected. The Inspector
is readily available from many other windows such as the Apropos
window.

Double-clicking on an object displayed in an Inspector window brings
up another Inspector window displaying the components of that object.

Because objects are editable in Inspector windows, you can change the
state of system internals and other components on the fly. However,
you should modify an object with the Inspector only when you
understand how it works and what effect your modification will have.
Otherwise you may corrupt your environment or even cause your
Macintosh to crash.

For example, it is safe to set the value of a global variable in the
Inspector window when inspecting a symbol. However, it’s inadvisable
to use the Inspector to set the values of slots in objects; use the standard
interface functions instead.

There are a number of ways to invoke the inspector:

■ You can inspect a symbol by selecting it or placing the cursor inside it
and issuing the Fred command Control-x Control-i. When you inspect
a symbol, the inspector will also show you all the objects associated
with the definitions of the symbol, such as the function if the symbol
has a function definition, or the class if the symbol has a class
definition.

■ You can use the Common Lisp function inspect. This function takes
any object as its argument, and inspects that object.

■ The Inspector command on the Tools menu has a number of sub-
commands for inspecting some built-in aspects of MCL.

■ Many of the other debugging tools, such as the apropos window or the
stack backtrace (described below) allow you to inspect the objects they
display simply by double-clicking them.

The following sections show some examples of using the Inspector.
Chapter 4: Debugging 55

Inspecting an object with inspect

Following is an example of inspecting a window w that has already
been closed.

➠ First create a window.
 ? (setq w (make-instance 'window))
 #<WINDOW "Untitled" #x583621>

➠ Then close it.
 ? (window-close w)
 NIL

➠ Inspect it.
 ? (inspect w)
 #<INSPECTOR-WINDOW "#<WINDOW #x583621>" #x452511>

An Inspector window opens to inspect w. The nil value in its wptr slot
shows that the window w is closed.

Figure 4-2 An Inspector window showing components of a window

You can inspect this window and its components. For example, you
could inspect the class of the window, #<STANDARD-CLASS
WINDOW>.
56 Getting Started With Macintosh Common Lisp

Inspecting objects from other tool windows

You can inspect objects from many of the other tool windows. For
example, from the apropos window you can double-click a symbol to
inspect it. You can then double-click any of the symbol’s components to
inspect that component.

Figure 4-3 shows a typical use of the Inspector with the apropos
window. The user first searches in the apropos window for window-
close; apropos shows the symbol window-close and several other
symbols.

Double-clicking window-close opens an Inspector window showing
the print name and package of the symbol window-close. You can
inspect any of the objects in the window by double-clicking that object.

The user double-clicks the package #<PACKAGE "CCL"> to inspect that
package.
Chapter 4: Debugging 57

Figure 4-3 An apropos window and the Inspector

Double-clicking on window-close brings up an Inspector window for that
symbol:

Double-clicking on #<Package "CCL"> inspects the package:
58 Getting Started With Macintosh Common Lisp

Errors and Break Loops

When Macintosh Common Lisp signals an error, it prints an error
message. The error message tells you what kind of error occurred, the
function in which it occurred, what objects were involved in the error,
and what your options are for recovering.

The details of the error message are specified by the person who wrote
the code which detected and signaled the error. Similarly, the recovery
options are put into place by the author of the software system in which
the error occurred. If there are no recovery options, there is always the
option of simply canceling the computation.

Some recovery options may be listed in the error message itself. Others
are given in the Restarts window, which is accessed through the
Restarts… command on the Lisp menu.

Reading an error message

Following is an example of a simple error message. The following code
for creating and closing a window contains an error:

➠ Enter an expression which contains an error.
? (setf w (make-instance 'window))
#<WINDOW "Untitled" #x4CF1D1>
? (close-window w)
> Error: Undefined function CLOSE-WINDOW called with
> arguments (#<WINDOW "Untitled" #x4CF1D1>) .
> While executing: TOPLEVEL-EVAL
> Type Command-/ to continue, Command-. to abort.
> If continued: Retry applying CLOSE-WINDOW to
> (#<WINDOW "Untitled" #x4CF1D1>).
See the Restarts… menu item for further choices.
1 >

In this case there is no such function as close-window. The function
toplevel-eval (which is part of the read-eval-print loop) gets an
error when trying to call this non-existent function.

The error message first gives the nature of the problem.
> Error: Undefined function CLOSE-WINDOW called with
> arguments (#<WINDOW "Untitled" #x4CF1D1>).

The message notes the function in which the error occurred:
> While executing: TOPLEVEL-EVAL
Chapter 4: Debugging 59

Next the message describes your options for recovery or cancellation.
In this case, you can either retry calling the function by choosing
Continue, or you can cancel the entire computation with Abort. As
always, you can check the Restarts window for additional options.
(They keystrokes command-/ and command-. are shortcuts for the
Continue and Abort commands on the Lisp menu.)
> Type Command-/ to continue, Command-. to abort.
> If continued: Retry applying CLOSE-WINDOW to (#<WINDOW
> "Untitled" #x4CF1D1>).
See the Restarts… menu item for further choices.

Finally the error message gives you a distinctive prompt notifying you
that you are in a break loop. The 1 indicates that you are in the first level
of a break loop.
1 >

Recovering or aborting

When an error occurs, you can always cancel the execution and often
you can continue.

Aborting

When the problem is obvious and is not inside a deeply nested time-
consuming computation, it is often easiest to cancel out of the execution
and start over.

➠ Cancel out of the execution.
Press Command-period or choose the Abort command from the Lisp
menu.

➠ Edit the form.
Press Option-G to bring back the last expression as you originally
typed it. Edit the expression to replace the call to close-window with
a call to window-close. (In the more usual case, the error would be in
a compiled function or other definition. You would use option-period
to get to the source code, and then edit and recompile the definition.)

➠ Retry the execution.
Press Return to try again. Assuming no other errors have been
introduced, execution should complete successfully and the window
should close.
60 Getting Started With Macintosh Common Lisp

Recovering

When an error occurs in the middle of a long computation—for
example, in the middle of a 3,000 file compilation—you will probably
want to find a way to recover and continue the computation rather than
aborting and starting over.

Options for recovery may include skipping some part of the
computation (for example, not compiling one of the 3,000 files), or they
may include changing your Lisp environment in some way so that the
function which hit the error can be reinvoked successfully.

The simple error above can be handled by defining the function
close-window and retrying the computation:

➠ Recreate the error condition by creating a window and trying to close
it by calling close-window.

➠ Define close-window.
1 > (defun close-window (w) (window-close w))
CLOSE-WINDOW

➠ Continue from the error.
Press command-/ or choose Continue from the Lisp menu. The
execution should complete successfully and the window should close.

The restarts window

The Restarts window automatically gathers all possible ways of
recovering from an error. It always offers you the option of canceling
and sometimes offers other options for continuing. If there are multiple
nested break loops, Restarts gives you the option of returning to any of
them.

In some cases, such as the one shown above, Restarts offers more
specific suggestions. Here the option "Apply specified function
to (#<WINDOW "Untitled" #x4D4D99>)..." lets you call
another function, rather than window-close.

Figure 4-4 The restarts window
Chapter 4: Debugging 61

➠ Recreate the same error as above.

➠ Open the Restarts window.
Select the Restarts… command from the Lisp menu. Notice that when
you attempt to call a function which is not defined, one of your options
is to complete the computation by calling a different function on the
same arguments.

➠ Find the correct function to call.
Select the Apropos command from the Tools menu. Search for all
functions that include both “close” and “window” in their names.
There are only two such functions, and only one likely candidate for
this operation.

➠ Restart the computation.
Return to the Restarts window and select “Apply specified
function…”. Enter the correct function name in the ensuing dialog, and
press Return. MCL completes the computation and closes the window.

Since the Restarts window is generated by a fixed algorithm, it often
suggests the same restart multiple times. In such cases, it doesn’t matter
which copy you choose. (However, if there are multiple levels of break
loop, make sure you’re not choosing to return to a point in the wrong
one!)

The break loop

The break loop is a read-eval-print loop that is activated when an error
occurs or when you explicitly call the function break. The process that
was running is suspended, and a new process—the break loop—is
activated. A break loop acts like the normal read-eval-print loop except
that it runs on top of your suspended program, allowing you to interact
with MCL on top of your program. From a break loop you can examine
your program state (including the stack), make changes, and then either
resume or cancel the operation of your program.

Break loops themselves can have break loops. That is, from the normal
read-eval-print loop you can break to a break loop, from that loop to
another break loop, and so on. Each level of break loop adds a new area
to the stack; canceling or continuing out of a break loop removes its
stack area (Figure 4-5).
62 Getting Started With Macintosh Common Lisp

ed

op
Figure 4-5 Effects on the stack of break, abort, and continue

Break loops add new areas to the stack, whereas Abort and Continue
remove areas from the stack. Within a break loop, the normal question
mark prompt is replaced by a number and an angle bracket. The
number of the prompt represents the level of the break loop.

Because the break loop runs on top of the interrupted program, all
globally defined and special variables have the values they had when
the interrupted program was suspended. Within the break loop you can
redefine functions, write methods, and change the values of global and
special variables. You can also edit the values of local variables, though
by doing so you risk corrupting your Lisp runtime.

By changing values within the break loop, you can often continue from
an error.

read-eval-print loop

User code in execution

read-eval-print loop

abort

read-eval-print loop

User code in execution

break

read-eval-print loop

User code suspended

break loop

New user code

in execution

User code resum

read-eval-print lo

continue
Chapter 4: Debugging 63

The stack backtrace

Whenever Macintosh Common Lisp is in a break loop, the stack
backtrace is enabled, letting you examine the functions and values on
the stack of the suspended process. If the value of the global variable
backtrace-on-break is true, the stack backtrace window opens
automatically when MCL enters a break loop. If the value of
backtrace-on-break is false, you can bring up the stack
backtrace window by choosing the Backtrace command from the Tools
menu.

The stack backtrace lists all the functions awaiting return values on the
stack at the time of the error. (Note, because of tail recursion
optimization, this may not be all the functions that were called.) By
examining what is on the stack and comparing it to what you expect,
you can often determine how the error occurred. By inspecting the
function containing the error, you may be able to edit and correct the
problem.

Figure 4-6 A stack backtrace

There are two tables in the Stack Backtrace window (Figure 4-6). The
upper table shows you the functions pending on the stack. You can
examine the stack frame of a function by selecting the function. This
shows you the values of local variables active in the function, including
its arguments. It also shows you any special variables that are bound
within the function. You can inspect a function by double-clicking it.
64 Getting Started With Macintosh Common Lisp

The lower table shows the stack frame of the function that is selected in
the upper table. The names of parameters and local variables will be
shown if the corresponding function was compiled interactively if
when *save-local-symbols* was true or was loaded from a fasl
file that was created when *fasl-save-local-symbols* was true;
otherwise automatically generated names will be used.

You can inspect an item in the lower table by double-clicking it.

In the space between the tables are three pieces of information about the
frame: the number of values in the frame, the memory address of the
frame, and the program counter within the function where execution
has been suspended. By comparing the program counter to a
disassembly of the function (available in the inspector), you can
determine where in the function execution halted.

The command pop-up in the stack backtrace lets you go to the source
code of a function, invoke recovery options, inspect values, and edit
values.

Processes

Macintosh Common Lisp supports multiple processes. This allows
multiple operations to occur simultaneously, including compilation,
editing, and other event handling.

You can abort a process (except a small number that cannot be
interrupted) by pressing Command-period or by choosing Abort from
the Lisp menu. You can suspend a process and enter a break loop to
examine it by pressing Command-comma or by choosing Break from
the Lisp menu.

There are often only two processes running: the main process, and a
process which handles events. If there are only two processes running,
then Command-period and Command-comma apply to the main
process. To abort or break the event process, use Option-Command
plus period or comma. If there are more than two processes running, a
dialog appears allowing you to choose a process to abort.

Choose Continue or press Command-slash to resume the process that
has been suspended. Continue is also available on the list generated by
the Restarts command on the Lisp menu.

Certain MCL tasks (for example, garbage collection) cannot be
interrupted. During these operations no other tasks can be performed
and no other processes will be given time.
Chapter 4: Debugging 65

The stepper

Macintosh Common Lisp provides the step macro as a simple way of
stepping through the execution of an expression, subexpression by
subexpression.

You can use the step macro on compiled functions only if their
definitions have been retained. Function definitions are retained if the
function is compiled with the variable *save-definitions* set to a
true value. If the function was compiled with *save-definitions*
set to nil, the value must be changed and the function must be
recompiled before it can be stepped through.

The step macro is usually called only from the top level. You can
invoke internal stepping through options to the trace macro.

It is not generally possible to step through code that requires the use of
without-interrupts or code that uses the Macintosh graphics
interface.

Figure 4-7 Stepping through the factorial function
66 Getting Started With Macintosh Common Lisp

Trace

Tracing is useful when you want to find out why a function behaves in
an unexpected manner, perhaps because incorrect arguments are being
passed.

Tracing causes actions to be taken when a function is called and when
it returns. The default tracing actions print the function name and
arguments when the function is called and print the values returned
when the function returns.

Other actions can be specified. These include entering a break loop
when the function is entered or exited, or stepping the function.

Note that self-recursive function calls are normally compiled inline. In
order to be able to trace such calls, the function must be declared not-
inline.
? (defun fact (num)
 (declare (notinline fact))
 (if (= num 0)
 1
 (* num (fact (- num 1)))))
FACT

Here the trace macro is used on fact:
? (trace fact)
NIL
? (fact 5)
 Calling (FACT 5)
 Calling (FACT 4)
 Calling (FACT 3)
 Calling (FACT 2)
 Calling (FACT 1)
 Calling (FACT 0)
 FACT returned 1
 FACT returned 1
 FACT returned 2
 FACT returned 6
 FACT returned 24
 FACT returned 120
120

To turn trace off, use untrace on the same function:
? (untrace fact)
(FACT)
Chapter 4: Debugging 67

The Trace window is accessible through the Trace… command on the
Tools menu. It shows you which functions are currently being traced,
and lets you select functions to trace with a number of options. For
example, it lets you easily choose methods to trace within a generic
function.

What you’ve learned about debugging

Macintosh Common Lisp has a variety for tools to help you understand
and debug your program. There are tools for retrieving documentation
and other information about definitions. There are tools for inspecting
objects in a variety of ways. Finally, there are tools for working with
and recovering from error situations.
68 Getting Started With Macintosh Common Lisp

69

Chapter 5:

Sources of Additional Information

Contents

Common Lisp References / 70
Common Lisp Tutorials / 70

If you are learning CLOS / 71
Macintosh Programming / 71
Examples / 72

The following sections describe useful background reading and other sources
of additional information.

Common Lisp References

Two Common Lisp reference works are available. These are not
tutorials, but are complete descriptions of every feature of the language.

■ Common Lisp: the Language, second edition is available in HTML format
in the documentation folder of the MCL CD.

■ The ANSI Common Lisp standard (X3.226-1994) is available in HTML
format on the internet, at
<http://www.harlequin.com/books/HyperSpec/>

MCL implements the language as described in Common Lisp: the
Language, second edition. However, this version is close enough to the
ANSI standard that the latter is still quite a useful reference when using
MCL.

Common Lisp Tutorials

Many good tutorials exist on Common Lisp. Here is a selection of the
best:

Brooks, Rodney. Programming in Common Lisp. New York: John Wiley
& Sons, 1985.

Graham, Paul. ANSI Common Lisp. New York: Prentice Hall, 1995.

Koschmann, Timothy. The Common Lisp Companion. Englewood Cliffs,
NJ: John Wiley & Sons, 1990.

This well-written book includes material from the second edition
of Common Lisp: The Language, including information on CLOS. The
author is on the ANSI XJ313 standards committee for Common
Lisp.

Miller, Molly M., and Eric Benson. Lisp Style and Design. Maynard, MA:
Digital Press, 1990.

An excellent intermediate-level book for someone learning
Common Lisp.

Norvig, Peter. Paradigms of Artificial Intelligence Programming: Case
Studies in Common Lisp. San Mateo, CA: Morgan-Kauffmann, 1991.

An excellent book for all levels of Common Lisp programming,
with many examples.

Tanimoto, Steven. The Elements of Artificial Intelligence Using Common
Lisp. Computer Science Press, WH Freemand and Company, 1990.
70

Tatar, Deborah. A Programmer’s Guide to Common Lisp. Maynard, MA:
Digital Press, 1987.

Touretzky, David. Common Lisp: A Gentle Introduction to Symbolic
Computing. Reading, MA: Addison-Wesley, 1990.

Touretzky writes well and includes many good examples for
novices.

Wilensky, Robert. Common LispCraft. New York: Norton & Co, 1986.

Winston, Patrick, and Berthold Claus Paul Horn. Lisp, third edition.
New York: Harper & Row, 1989.

A thorough academic text that includes material on CLOS.

The following is an excellent introduction to programming, abstraction,
and computer science. It uses Scheme, a language similar to Common
Lisp. With a relatively small knowledge of Lisp, you should be able to
make use of it.

Abelson, Harold, and Gerald Sussman. Structure and Interpretation of
Computer Programs. Cambridge, MA: MIT Press, 1985.

If you are learning CLOS

Appendix B: The Common Lisp Object System provides a short
introduction to CLOS.

The following book by Sonya Keene is a very thorough tutorial on
CLOS (the Common Lisp Object System).

Keene, Sonya E. Object-Oriented Programming in Common Lisp: A
Programmer’s Guide to CLOS. Reading, MA: Addison-Wesley, 1989.

The books by Koschmann and by Winston and Horn, listed in the
preceding section, also include material on CLOS.

Macintosh Programming

If you want to know more about programming the Macintosh, Apple
Developer University offers excellent self-paced courses for novice and
intermediate Macintosh programmers, including courses on Macintosh
Programming Fundamentals and Introduction to Object-Oriented
Programming. Live courses are also offered through Developer
University.
Chapter 5: Sources of Additional Information 71

The standard reference for Macintosh programming is Inside Macintosh,
published by Apple Computer, Inc., and available through the Apple
Developer Catalog (formerly APDA). Inside Macintosh is available in
paper and CD editions.

Examples

The Examples folder of Macintosh Common Lisp provides examples of
CLOS programming. Continuing discussions of CLOS programming
issues take place on the info-mcl mailing list.
72 Getting Started With Macintosh Common Lisp

73

Appendix A:

Fred Commands

Contents

Fred modifier keys / 74
Help commands / 75
Movement / 76
Selection / 77
Insertion / 77
Deletion / 79
Lisp operations / 80
Windows / 80
Incremental search / 81

In this appendix you’ll learn about the Fred modifier keys and the standard
Fred commands.

Like all parts of Macintosh Common Lisp, Fred is written in Macintosh
Common Lisp and is fully extensible. You can change what key runs any of
these commands and can write commands of your own. This appendix just
describes the starting point.

For full details about these commands, see Chapter 2, “Editing in Macintosh
Common Lisp,” and Chapter 14, “Programming the Editor,” both in the
Macintosh Common Lisp Reference.

Fred modifier keys

Fred relies on two modifier keys to indicate command keystrokes. In
the Emacs tradition, these modifiers are called Control and Meta. The
following key sequences are used to indicate Control and Meta in MCL:

■ To enter a Control keystroke, hold down the Control key while you
press the other key of the keystroke. For example, to enter Control-X,
hold down the Control key and press X. To enter Control-X Control-S
(Save Window), hold down the Control key and press X, then continue
to hold down Control and press S. To enter Control-X H (Select All),
hold down Control and press X, then release the Control key and press
H.

■ There are two ways to enter a Meta keystroke.

 By default, the Option key used to indicate Meta keystrokes. To
enter a Meta keystroke, hold down the option key and then press
the other key of the keystroke.

 The example file “escape-key.lisp” allows the escape key to be used
as the Meta keystroke. When this file is loaded, you enter a Meta
keystroke by pressing and releasing the escape key, and then
pressing and release the other key of the keystroke. This allows you
to have access to the optional character set of the Macintosh when
editing in Fred.

■ To enter a Control-Meta keystroke, hold down both modifier keys as
you press the other key of the keystroke.
74

Help commands

The help functions are bound to the keystroke sequences shown in
Table A-1.

■ Table A-1 Help command keystrokes

Function Keystroke

Displays Fred Help window with list of all keyboard commands Control-?

Displays definition of current expression Meta-period

Inspects current expression Control-X Control-I

Prints argument list of current expression Control-X Control-A

Prints documentation string of current expression Control-X Control-D

Prints information about current Fred window Control-=
Appendix A: Fred Commands 75

Movement

During editing, use the keystrokes shown in Table A-2 to move the
insertion point.

■ Table A-2 Movement command keystrokes

Function Keystroke

Moves backward one character Control-B, ←

Moves forward one character Control-F, →

Moves backward one word Meta-B, Meta-←

Moves forward one word Meta-F, Meta-→

Moves forward one s-expression Control-Meta-F, Control-→

Moves backward one s-expression Control-Meta-B, Control-←

Moves to beginning of line Control-A

Moves to end of line Control-E

Moves to beginning of current top-level s-expression Control-Meta-A

Moves to end of current top-level s-expression Control-Meta-E

Moves up one line (to previous line) Control-P, ↑

Moves down one line (to next line) Control-N, ↓

Moves forward one screen Control-V

Moves backward one screen Meta-V

Moves to beginning of buffer Meta-<

Moves to end of buffer Meta->

Moves over next close parenthesis and reindents Meta-)
76 Getting Started With Macintosh Common Lisp

Selection

The keystroke sequences shown in Table A-3 are used to select text.

■ Table A-3 Selection command keystrokes

Function Keystroke

Insertion

The keystroke sequences shown in Table A-4 are used to insert text and
space.

■ Table A-4 Insertion command keystrokes

Function Keystroke

Selects current expression Control–Meta–Space bar

Selects current top-level expression (the expression that has an
open parenthesis flush with the left margin)

Control-Meta-H

Selects entire buffer Control-X H

Inserts new line without moving insertion point Control-O

Reindents current line or selection Tab

Reindents current expression Control-Meta-Q

Inserts Return followed by Tab Control-Return

Yanks (pastes) current kill-ring string Control-Y

Rotates the string that is pasted from the kill ring Meta-Y
Appendix A: Fred Commands 77

■ Table A-4 Insertion command keystrokes (continued)

Function Keystroke

Quotes next keystroke, allowing access to Macintosh optional
character set; use with Option key and control characters such as
Tab

Control-Q

Inserts quotation marks and moves insertion point between
them to type a string

Meta-"

Inserts sharp comment signs and moves insertion point between
them to type a sharp comment

Meta-#

Inserts set of parentheses and moves insertion point between
them to type an expression

Meta-(

Converts rest of current word or selection to uppercase Meta-U (Uppercase U)

Converts rest of current word or selection to lowercase Meta-L

Capitalizes rest of current word or selection Meta-C

Transposes the two characters on either side of insertion point Control-T

Transposes the two words on either side of insertion point Meta-T

Transposes the two s-expressions on either side of insertion
point

Control-Meta-T
78 Getting Started With Macintosh Common Lisp

Deletion

The keystroke sequences shown in Table A-5 are used to delete text and
spaces.

■ Table A-5 Deletion command keystrokes

Function Keystroke

Deletes character to left of insertion point Delete

Deletes word to left of insertion point Meta-Delete

Deletes expression to left of insertion point Control-Meta-Delete

Deletes character to right of insertion point Control-D, Forward Delete on
Apple Extended Keyboard

Deletes word or part of word to right of insertion point, adds to
kill ring

Meta-D

Deletes from insertion point to end of line, adds to kill ring Control-K

Deletes expression to right of insertion point, adds to kill ring Control-Meta-K

Deletes current selection, adds to kill ring Control-W

Copies current selection onto kill ring without deleting Meta-W

Deletes whitespace (spaces or tabs) from insertion point to next
nonwhite character

Control-X
Control–Space bar

Deletes whitespace (spaces or tabs) around insertion point, adds
one space

Meta–Space bar
Appendix A: Fred Commands 79

Lisp operations

The keystroke sequences in Table A-6 are used to execute, compile,
macroexpand, and read the current Lisp expression.

■ Table A-6 Lisp operation command keystrokes

Function Keystroke

Windows

The keystroke sequences in Table A-7 are used to save windows, open
files, and select windows.

Evaluates or compile current expression Enter

Evaluates or compiles current selection or current top-level
expression

Control-X Control-C

Evaluates current expression Control-X Control-E

Repeatedly macroexpands the current expression until the
result is no longer a macro. The result of each macroexpansion
is pretty-printed to the Listener.

Control-M

Repeatedly macroexpands the current expression until the
result is no longer a macro. The final expression is pretty-
printed to the Listener, but the intermediate expressions are not.

Control-X Control-M

Reads the current expression and pretty-prints it in the Listener Control-X Control-R
80 Getting Started With Macintosh Common Lisp

■ Table A-7 Window command keystrokes

Function Keystroke

Incremental search

Fred supports keyboard-based incremental searching.

You begin an incremental search by pressing Control-S (search
forwards) or Control-R (search reverse). After typing this command
keystroke, you begin typing the string for which you are searching. As
each character is typed, the search proceeds to the next occurrence in
the window of the string as specified so far. You can search for the next
occurrence without augmenting the string by typing an additional
Control-S or Control-R.

Full details on searching can be found in the section “Incremental
Searching in Fred” in “Editing in Macintosh Common Lisp,” Chapter
2 of the Macintosh Common Lisp Reference.

The keystroke sequences in Table A-8 are used during incremental
searches.

Saves contents of active Fred window to file Control-X Control-S

Saves contents of active Fred window under a new name Control-X Control-W

Selects a text file and opens a Fred window to edit that file Control-X Control-V

Selects the second window. Pressing this keystroke repeatedly
swaps the top two windows.

Control-Option-L
Appendix A: Fred Commands 81

■ Table A-8 Search command keystrokes

Function Keystroke

Searches forward incrementally Control-S

Searches backward incrementally Control-R

Deletes characters from search string Delete

Terminates incremental search Escape

Cancels incremental search Control-G

Inserts quoted character Control-Q

Copies word following insertion point into search string Control-W

Copies line following insertion point into search string Control-Y
82 Getting Started With Macintosh Common Lisp

83

Appendix B:

The Common Lisp Object System

Contents

MCL and CLOS / 84
Definitions / 84

Classes and their superclasses / 84
Slots / 85
Instances / 85
Generic functions and methods / 86

Classes and instances / 87
Creating a class with the macro defclass / 87
Creating an instance and giving its slots values / 88
Redefining a class / 90
Allocating the value of a slot in a class / 90
Classes as prototypes of other classes / 91

Methods / 92
Defining a method and creating a generic function / 92
Congruent lambda lists / 93
Defining methods on instances / 93
Creating and using accessor methods / 94
Customizing initialization with initialize-instance / 96
Creating subclasses and specializing their methods / 96

Method combination / 97
The primary method / 97
The primary method and the class precedence list / 98
Examples of classes with multiple superclasses / 98

When there is a conflict: Choosing between methods / 99
Choosing between methods associated with direct and with more
distant superclasses / 100

Creating auxiliary methods and using method qualifiers / 100
Mixin classes and auxiliary methods / 102

Extended examples / 102

This appendix provides a simple introduction to CLOS, the Common Lisp
Object System.

MCL and CLOS

Macintosh Common Lisp uses the Common Lisp Object System
(CLOS), the object system of ANSI Common Lisp. CLOS is based on
many years of experience with Common Lisp, augmented by
substantive proposals and changes suggested by its developers and
users, and coordinated by X3J13, a subcommittee of ANSI committee
X3.

Common Lisp: The Language, second edition provides detailed
summaries of the X3J13 committee’s thinking. Though not an official
standards document, the second edition of Steele extensively
documents almost all of the functionality contained in the standard.
Some changes to the standard have been approved since the time of
publication of Common Lisp: The Language. Where they affect Macintosh
Common Lisp, these changes are documented in the appropriate
sections of this manual.

As you write new code, you should consult the standard as described
in Steele or in the ANSI specification.

Definitions

The basic concepts of CLOS include classes, slots, instances, generic
functions, and methods.

Classes and their superclasses

A class is an object that determines the inherited behavior of other
objects, called its instances.

■ Classes are organized in a hierarchy.

■ A class can inherit structure from other classes, which are called its
superclasses. Its immediate superclasses are called its direct
superclasses. A class is a subclass of each of the classes from which it
inherits.
84 Macintosh Common Lisp Reference

■ There are two classes at the top of the class hierarchy. The class named
t has no superclasses and is a superclass of every class except itself. The
class named standard-object is a superclass of all the classes
programmers create. (However, it is not a superclass of some built-in
classes.)

■ A class has a name.

■ A class has a class precedence list, which is the total ordering of the
class and all its superclasses. When a class is defined, the order in
which its direct superclasses are mentioned determines the order of the
class precedence list.

Most Common Lisp types now correspond to a class with the same
name. That is, for a type macptr, there will also be a class macptr.

Slots

A class is associated with a set of slots.

Slots are used for storing information associated with a class and its
instances. A slot is described by a slot specifier. Each slot specifier
includes the name of the slot and zero or more slot options. A class is
also associated with a set of class options, which are slot options with
a common value for the whole class. Slot options and class options
control the following:

■ determining default initial values for a given slot

■ reading and writing the values of slots

■ controlling whether a value for a given slot is shared by all instances of
a class or whether each instance has its own value for the slot

■ supplying a set of initialization arguments and default values to be
used when instances are created

Instances

In CLOS, there is a clear distinction between classes and instances.
CLOS is not a prototype-based object system.

■ An instance is a Common Lisp object, one of a group of zero or more
instances of a class. An instance may have a default state derived from
the class definition, or may have its own particular state.

■ An instance may use a method defined on its class or on one of the
class’s superclasses, or may have its own method. See the next section
for the definition of methods.
Appendix B: The Common Lisp Object System 85

■ Every Common Lisp object, including class objects, is an instance of
some class.

Generic functions and methods

Behavior is expressed through generic functions, Lisp functions whose
behavior depends on the classes or identities of the arguments
supplied.

■ A generic function has methods for a number of classes. That is, the
generic function has a number of ways to perform a procedure, each
way designed to be used for a specific class. For example, the generic
function view-draw-contents has one method for simple views,
one for views, one for windows, and so on. That is, it knows how to
draw the contents of a simple view, the contents of a view, and so on.

■ These methods are related but usually not identical (for instance, the
view-draw-contents method for simple-view doesn’t need to
handle subviews, but the one for view does).

■ When you want to perform an operation on some objects, you apply a
generic function to an instance. By determining which methods of the
generic function are associated with the instance’s class, the generic
function knows which of its methods to apply to the instance.

■ Methods are applied to instances through method combination. A
generic function determines one primary method suitable for an
instance—one basic procedure that is the most appropriate to the
instance. It may also call other methods through call-next-method.
One or more auxiliary methods may be run before or after the primary
method. The entire group of methods applicable to the instance is
called the effective method.

■ Methods have arguments, just as functions do.

■ Methods of the same generic function must always have the same
number of required and optional arguments; that is, they must have
congruent lambda lists.

■ The required arguments of a method are specialized; that is, each
argument is associated with a class or an instance. The specializers of a
method determine whether the method is appropriate for a given set of
arguments.
86 Macintosh Common Lisp Reference

Classes and instances

Classes can be created and redefined. You can create instances of classes
and give values to slots in a class or an instance.

Creating a class with the macro defclass

The macro defclass creates a new class. Its first argument is a list of
the superclasses of the new class. If the argument is nil, the new class
is based on standard-object.

Its second argument is a list of slot specifiers. Each slot is a list, the first
element of which is a symbol that names the slot. The second and third
elements are the slot’s initialization argument and default initial value
form, if it has them. These appear in definitions as the initarg and
initform keywords.

Initialization arguments are keyword arguments used to supply the
values for slots when new instances are created. Initial value forms
provide a mechanism for a user to give a default initial value form for a
slot.

 The macro defclass returns the new class object.

Here is an example of the use of defclass.
? (defclass fourth-grader ()
 ((teacher :initarg :teacher
 :initform "Mrs. Marple")
 (name :initarg :name)
 (age :initarg :age :initform 9)))
#<STANDARD-CLASS FOURTH-GRADER>

Figure C-1 shows a graphic representation of how the class fourth-
grader is built. This class is associated with three slots—name, age,
which has the default initial value 9, and teacher, which has the
default initial value "Mrs. Marple". The name of the new class is the
symbol fourth-grader.
Appendix B: The Common Lisp Object System 87

Figure C-1 The class fourth-grader

Creating an instance and giving its slots values

To create an instance of the class, use the generic function make-
instance. This function creates and returns a new object based on its
argument, which should be a class.
? (setq john (make-instance 'fourth-grader))
#<FOURTH-GRADER #x436B51>

An instance has slots as determined by its class and that class’s
superclasses.

You can set the values of an instance’s slots when you create it. The
following example creates an instance of fourth-grader and uses the
initialization argument :teacher to override the default value for that
slot:
? (setf john (make-instance 'fourth-grader
 :teacher "Ms. Hsu"))

#<FOURTH-GRADER #x477181>

The function slot-value retrieves the value of a slot. This function
takes two arguments, the class or instance and the name of the slot.
? (slot-value john 'teacher)
"Ms. Hsu"

You can set the value of most slots of an already created instance by
using setf with the name of the slot, for example, to give the instance
john its own name (Figure C-2) or to change the value of the
:teacher slot.

superclasses

class

class name:

Initialization arguments:

t

standard-object

fourth-grader

fourth-grader

teacher

name

age

Initial value forms:
"Mrs. Marple"

9

88 Macintosh Common Lisp Reference

rms:
le"

? (setf (slot-value john 'name) "John")
"John"
? (slot-value john 'name)
"John"
? (setf (slot-value john 'teacher) "Ms. Miller")
"Ms. Miller"
? (slot-value john 'teacher)
"Ms. Miller"

◆ Note: Accessor methods provide a simpler syntax than slot-value
does. For more details, see “Creating and using accessor methods” on
page 94.

Figure C-2 An instance of fourth-grader with a value in the name slot

To find the slot value associated with an instance, CLOS first looks up
the value associated with the slot at the instance level. If the slot is
unbound at the instance level, CLOS looks up the value associated with
the instance’s class. If the slot is still unbound, CLOS looks for the value
in the slot associated with the first class that is a member of the class’s
class precedence list, then looks in the slot of the second class, and so on
until it finds one value, which it returns.

superclasses

instance

Initialization arguments:

john

class name:

class

t

standard-object

fourth-grader

fourth-grader

teacher

name

age

Initial value fo
"Mrs. Marp
"John"

9

Initialization arguments:
teacher

name

age

Initial value forms:
"Mrs. Marple"

9

Appendix B: The Common Lisp Object System 89

Redefining a class

To redefine a class, simply edit the previous definition of the class and
execute it again. Here is a revised definition of fourth-grader,
adding a school slot :
? (defclass fourth-grader ()
 ((teacher :initarg :teacher
 :initform "Mrs. Marple")
 (school :initarg :school
 :initform "Lawrence School")
 (name :initarg :name)
 (age :initarg :age :initform 9)))
#<STANDARD-CLASS FOURTH-GRADER>

After the redefinition, all instances of fourth-grader, including ones
already created, will have a school slot.
? (slot-value john 'school)
"Lawrence School"

When you create a new instance, you can specify a value for the
school slot.

Allocating the value of a slot in a class

You can specifically instruct a slot to be associated not with an instance,
but with the instance’s class, by using the :allocation option when
you define the slot.

The two :allocation options are :instance and :class. The
:instance option is the default; this option means that each instance
of a class has local storage for the slot that can be associated with its own
value. The :class option specifies that the class stores the value of the
slot. A slot of this kind is called a shared slot or a class slot. The
following code defines picky-fourth-grader, associating it with a
class slot for subjects-studied:

? (defclass picky-fourth-grader
 (fourth-grader)
 ((subjects-studied
 :initarg subjects-studied
 :initform '(English math woodworking)
 :allocation :class)))
#<STANDARD-CLASS PICKY-FOURTH-GRADER>
90 Macintosh Common Lisp Reference

Since all instances of picky-fourth-grader access the same
subjects-studied slot, you can setf the class slot value through
any instance:
? (setf zane (make-instance 'picky-fourth-grader))
#<PICKY-FOURTH-GRADER #x40CDC9>
? (setf justus (make-instance 'picky-fourth-grader))
#<PICKY-FOURTH-GRADER #x40EFC8>
? (setf (slot-value zane 'subjects-studied)
 '(English math woodworking phenomenology))
(ENGLISH MATH WOODWORKING PHENOMENOLOGY)
? (slot-value justus 'subjects-studied)
(ENGLISH MATH WOODWORKING PHENOMENOLOGY)

Classes as prototypes of other classes

As you can see from the example “Creating an instance and giving its
slots values” on page 88, you can build classes from other classes.
Subclasses may add slots or change the default initial value of a slot that
already exists. Subclasses may also have their own methods (see the
next section, “Methods”).

This is the syntax for defining a new class. It defines modern-fourth-
grader, built on fourth-grader, with an additional slot, computer,
and a new default value for teacher.
? (defclass modern-fourth-grader
 (fourth-grader)
 ((computer :initarg :computer
 :initform "Macintosh")
 (teacher :initform "We use HyperCard stacks.")))
#<STANDARD-CLASS MODERN-FOURTH-GRADER>
? (setf mariah (make-instance 'modern-fourth-grader))
#<MODERN-FOURTH-GRADER #x51A209>
? (slot-value mariah 'teacher)
"We use HyperCard stacks."
? (slot-value mariah 'computer)
"Macintosh"
? (setf (slot-value mariah 'teacher)
 "We program our own in Macintosh Common Lisp.")
"We program our own in Macintosh Common Lisp."

The instance mariah inherits slots and values it does not redefine.
? (slot-value mariah 'school)
"Lawrence School"
Appendix B: The Common Lisp Object System 91

Methods

CLOS is built on the idea that many functions operate in different ways
when called on different classes of objects. Any function that operates
in more than one way is called a generic function, a Lisp function
whose behavior depends on the parameters supplied to it. Like any
other Lisp function, a generic function can be passed as an argument
and returned as a value, and it does all the other things a function does.

But while an ordinary function has a single body of code that is always
executed, a generic function has a set of bodies of code, called methods.
When a generic function is called on an instance, the function looks at
the class or classes of the instance. In the simplest case, the generic
function has a method for the instance’s class. (For example, the generic
function #'set-part-color has a method for table-dialog-
item. Calling #'set-part-color on an instance of table-
dialog-item calls that method. Calling #'set-part-color on an
instance of radio-button-dialog-item calls a different method.)

In cases where the instance’s class has a complex parentage, methods
may be combined. What the function does—which bodies of code are
called and how they are combined—is calculated from the class
precedence list, the total ordering of the set of classes from which a
class inherits. It also depends on the method combination type.

You can define a generic function by using the macro defgeneric.
More often, however, you use defmethod, which defines a method on
a generic function for a particular class. If the generic function does not
already exist, defmethod creates one.

Defining a method and creating a generic function

By using defmethod to define a method, you automatically generate a
generic function with the same name as the method. For example, you
can create a generic function #'say by using defmethod to define a
method say. Here is an example of the use of defmethod.

The following function prints a sentence of an instance of fourth-
grader surrounded by enthusiastic punctuation, then returns nil:
92 Macintosh Common Lisp Reference

? (defmethod say ((child fourth-grader) sentence)
 (princ "***")
 (princ sentence)
 (princ "!***")
 (terpri))
SAY
? (setq billy-crystal (make-instance 'fourth-grader
 :name "Billy Crystal"))
#<FOURTH-GRADER #x60B5F1>

When say is called on billy-crystal, it checks the type of billy-
crystal and finds that it is a fourth-grader. The generic function
checks to see whether it has a method for fourth-grader; since it
does, it runs that method.
? (say billy-crystal "Marvelous")
Marvelous!
NIL

Congruent lambda lists

All methods on a generic function have congruent lambda lists. That is,
they have the same number of required and optional arguments. (For
full details on congruent lambda lists, see Common Lisp: The Language,
pages 791–792.) For example, the generic function #'say always
requires an instance to which it is applied and a sentence.

Defining methods on instances

You can specialize methods on individual instances as well as on entire
classes. If you need a method for say that is called only on alisa, an
instance of fourth-grader, then specify child to be eql to alisa,
as shown in the following example. The expression (declare
(ignore sentence)) avoids a compiler warning. The function
call-next-method calls the next most specific method, which is the
method on fourth-grader:
Appendix B: The Common Lisp Object System 93

? (defmethod say ((child (eql alisa)) sentence)
 (declare (ignore sentence))
 (call-next-method)
 (princ "I have an HP calculator")
 (terpri))
#<Method SAY ((EQL #<FOURTH-GRADER #x436B51> T)>

? (say alisa "Hello")
Hello!
I have an HP calculator
NIL

Applied to other fourth-graders, such as sharon, say still calls its usual
fourth-grader method.
? (say sharon "Hello")
Hello!
NIL

◆ Note: The function call-next-method is perfectly acceptable here,
but CLOS more commonly would use an :after method. Method
combination is discussed later in “Creating auxiliary methods and
using method qualifiers” on page 100.

Creating and using accessor methods

The macro defclass provides syntax for automatically generating
methods to read and write slots. Because the accessor is the most
common of these methods, the whole group is called accessor methods.
You can request three kinds of methods.

■ If you request a reader, Macintosh Common Lisp generates a method
for reading the value of a slot but none for storing a value into it.
Readers are used when the slot value won’t change.

■ If you request a writer, Macintosh Common Lisp generates a method
for storing a value into a slot, but no method for reading its value.

■ If you request an accessor, Macintosh Common Lisp generates two
methods, a named method for reading the value and a setf method
on the named method for storing a new value.

Using accessors to read and write the values of slots is preferable
because accessor methods hide implementation detail. Your clients can
call the accessor method without knowing whether it accesses a slot or
computes a value in some other way. The implementation can later
change without affecting the client’s code.
94 Macintosh Common Lisp Reference

Here is the fourth-grader class redefined using accessor methods.
The accessor doesn’t need to have the same name as the slot; here the
accessor of the slot teacher is named fourth-grade-teacher:
? (defclass fourth-grader ()
 ((teacher :initarg :teacher
 :initform "Mrs. Marple"
 :accessor fourth-grade-teacher)
 (name :initarg :name
 :reader name)
 (school :initarg :school
 :initform "Lawrence School"
 :accessor school)
 (age :initarg :age
 :initform 9
 :accessor age)))

The :reader and :accessor methods simply provide a more
abstracted alternative to slot-value and do not prevent your using
slot-value as well. Creating the accessor method fourth-grade-
teacher is equivalent to
? (defmethod fourth-grade-teacher ((student fourth-grader))
 (slot-value student 'teacher))

? (defmethod (setf fourth-grade-teacher)
 (new-teacher (student fourth-grader))
 (setf (slot-value student 'teacher) new-teacher))

Making an instance of fourth-grader works the same way as
previously.
? (setq delia (make-instance 'fourth-grader
 :teacher "Mr. Smith"
 :name "Delia"))

But you can now use the accessor method fourth-grade-teacher
to get the teacher of delia and the accessor method age to get the
age of delia:
? (fourth-grade-teacher delia)
"Mr. Smith"
? (age delia)
9

Accessor methods create regular generic functions and can be used just
like any other Lisp functions. For instance, you can combine fourth-
grader methods say and school to have an instance of fourth-
grader report on the school it goes to. Because all look-ups occur at
run time, this works even though say was defined before fourth-
grader was redefined.
Appendix B: The Common Lisp Object System 95

? (say mariah (school mariah))
Lawrence School!
NIL
? (say alisa (fourth-grade-teacher alisa))
Mrs. Marple!
I have an HP calculator
NIL
? (setf (age sharon) 10)
10

Customizing initialization with initialize-instance

Creating instances is not only a matter of associating values with slots;
other initialization must often be performed. You specify what needs to
be done by specializing the generic function initialize-instance.
A method on initialize-instance for fourth-grader might
look like the following:
(defmethod initialize-instance ((child fourth-grader)
 &rest initargs)
 (add-to-class-list child)
 (check-vaccinations child)
 (check-special-programs child))

When an instance of fourth-grader is created, make-instance
calls initialize-instance, which calls the functions add-to-
class-list and so on. These functions run their methods for
fourth-grader. The functions that make-instance calls do not
need to be generic functions and, if they are, do not need to have
methods specifically for fourth-grader; they might have methods
for one of the class’s superclasses.

Creating subclasses and specializing their methods

When you create a subclass, you can write methods specific to that
subclass.
? (defclass shy-kid (fourth-grader)())
#<STANDARD-CLASS SHY-KID>

? (defmethod say ((child shy-kid) sentence)
 (princ "...")
 (princ sentence)
 (princ "...")
 (terpri))
#<Method SAY (SHY-KID T)>
96 Macintosh Common Lisp Reference

? (setq max (make-instance 'shy-kid))
#<SHY-KID #x609A69>
? (say max "Hi")
...Hi...
NIL

An instance of a subclass still inherits slot values and methods from its
class’s superclasses.
? (school max)
"Lawrence School"

Method combination

◆ Note: This and the following sections provide a very simplified
summary of method combination. For full details see Common Lisp: The
Language.

How does a function decide which method to use for a particular set of
arguments?

There are two categories of methods. The first, the primary method,
defines the main action of the effective method that the generic function
applies to the instance.

The second category, auxiliary methods, may modify that action in one
of three ways. An auxiliary method has the method qualifier :before,
:after, or :around. They run before the primary method, after the
primary method, or around the primary method and all of its :before
and :after methods.

The primary method

The primary method applied to the instance is always the most specific
method the generic function has for the arguments it has been given.
When a generic function has a method for an instance, the instance’s
method is used. If not, CLOS looks up applicable methods for the
instance’s direct superclass, then for that superclass’s superclass, and so
on. As soon as one applicable method is found, the search stops and
that method is applied to the instance. (If there is no applicable primary
method, the function signals an error.)
Appendix B: The Common Lisp Object System 97

The primary method and the class precedence list

It is important to know in what order to look up methods. When a class
has many superclasses, behavior is determined by the ordered list of its
superclasses—its class precedence list. The class precedence list is basic
to method combination.

The order in which the superclasses are listed determines the order in
which their primary methods are consulted. If the instance has a
method, that method is used. If the class has a method, that is used.
Otherwise the look-up consults the first (leftmost) superclass in the
class precedence list, looking up the class’s methods and those of the
class’s superclasses, leftmost superclass first. If there is no appropriate
method anywhere in the first superclass or its superclasses, the look-up
proceeds to the second superclass, and so on. The first applicable
primary method that is found is used.

However, when elements of the class precedence list have superclasses
in common, CLOS examines, in this order:

1. all of the elements of the first superclass except the class in
common

2. all of the elements of the second superclass except the class in
common

3. the class in common (followed by its superclasses)

Examples of classes with multiple superclasses

We have seen simple class precedence at work in earlier examples. Let
us look at some examples of multiple superclasses.

For example, suppose two classes, bored-kid and happy-kid, both
subclasses of fourth-grader, with instances harvey and laura.
The bored kid has homework and the happy kid has a pet. Each
subclass has a method for a generic function, #'go-crazy:
? (defclass bored-kid (fourth-grader)
 ((homework :initarg :homework
 :initform "Easy Steps to Calculus"
 :accessor homework)))
#<STANDARD-CLASS BORED-KID>

? (defmethod go-crazy ((child bored-kid) exclamation)
 (princ "I'm so bored! ")
 (princ exclamation)
 (princ "! What a dump!")
 (terpri))
#<Method GO-CRAZY (BORED-KID T)>
98 Macintosh Common Lisp Reference

? (setq harvey (make-instance 'bored-kid))
#<BORED-KID #x608879>
? (go-crazy harvey "Yukh")
I'm so bored! Yukh! What a dump!
NIL

? (defclass happy-kid (fourth-grader)
 ((pet :initarg :pet
 :initform "gorilla"
 :accessor pet)))
#<STANDARD-CLASS HAPPY-KID>

? (defmethod go-crazy ((child happy-kid) exclamation)
 (princ "How happy I am! ")
 (princ exclamation)
 (princ "! I'm going to shout and throw paper clips!")
 (terpri))
#<Method GO-CRAZY (HAPPY-KID T)>

? (setq laura (make-instance 'happy-kid))
#<HAPPY-KID #x608C51>
? (go-crazy laura "Wow")
How happy I am! Wow! I'm going to shout and throw paper
clips!
NIL

When there is a conflict: Choosing between methods

When two classes inherit from the same superclasses, CLOS uses the
class precedence list to determine which primary method to use. For
example, we can define two new classes, happy-kid-with-
homework and bored-kid-with-pet, that inherit from the same
superclasses, but in opposite order.
? (defclass happy-kid-with-homework
 (happy-kid bored-kid)())
#<STANDARD-CLASS HAPPY-KID-WITH-HOMEWORK>
? (setq smiley (make-instance 'happy-kid-with-homework))
#<HAPPY-KID-WITH-HOMEWORK #x609C48>

? (defclass bored-kid-with-pet (bored-kid happy-kid)())
#<STANDARD-CLASS BORED-KID-WITH-PET>
? (setq bad-max (make-instance 'bored-kid-with-pet))
#<BORED-KID-WITH-PET #x609C53>

To find the applicable method for go-crazy, CLOS looks for a method
associated with the instance, then with the class, then with the first
direct superclass in the list of the class’s parents. The function go-
crazy has an applicable method for the first parent, happy-kid.
Therefore happy-kid-with-homework calls the go-crazy method
associated with happy-kid as a primary method. It never calls the
method for bored-kid because it doesn’t get that far.
Appendix B: The Common Lisp Object System 99

? (go-crazy smiley "Wow")
How happy I am! Wow! I'm going to shout and throw paper
clips!
NIL

But bored-kid-with-pet calls the bored-kid method.
? (go-crazy bad-max "Ugh")
I'm so bored! Ugh! What a dump!
NIL

Choosing between methods associated with direct and with more distant superclasses

Suppose that happy-kid has a method for #'say but bored-kid
doesn’t:
? (defmethod say ((child happy-kid) sentence)
 (declare (ignore sentence))
 (princ "This primary method comes from happy-kid.")
 (terpri))
#<Method SAY (HAPPY-KID T)>

When CLOS looks for a method, it examines a class before its direct
superclasses and a direct superclass before all other direct superclasses
specified to its right in the list of the class’s parents. Remember, if two
of the direct superclasses of a class have a superclass in common, then
the order is

1. all of the elements of the first superclass except the class in
common

2. all of the elements of the second superclass except the class in
common

3. the class in common (followed by its superclasses)

Within those constraints, the local ordering of the class precedence list
is determined by taking all the elements of the class and doing a
topological sort on them.

Here, bored-kid and happy-kid have a superclass in common,
fourth-grader, so bored-kid and happy-kid both affect the
behavior of bored-kid-with-pet before fourth-grader does:
? (say bad-max "I hate homework.")
This primary method comes from happy-kid.
NIL

Creating auxiliary methods and using method qualifiers

Only one primary method can be applied to any set of arguments, but
its behavior can be modified using auxiliary methods.
100 Macintosh Common Lisp Reference

)

All :before methods are run before the primary method. CLOS looks
for :before methods in the same order as it looks for primary
methods: instance first, then class, then direct superclasses. This order
is called most specific first. After all applicable :before methods have
run, Macintosh Common Lisp calls the primary method, then
the:after methods in reverse order, from the :after methods
associated with t all the way down to the class and instance :after
methods if there are any. (This order is called least specific first.)

All :around methods (which are seldom used) specify code that is to
be called instead of other applicable methods, but can pass control to
other methods, including the primary, :before, and :after
methods. The effect is that the :around method runs “around” the
other methods. An :around method uses call-next-method to
pass control to the other methods.
Here is an example of :before and :after methods.
? (defmethod say :before ((child bored-kid) sentence)
 (declare (ignore sentence))
 (princ "First there is a :before method from bored-kid."
 (terpri))
#<Method SAY :BEFORE (BORED-KID T)>

? (defmethod say :after ((child bored-kid) sentence)
 (declare (ignore sentence))
 (princ "Then there is an :after method from bored-kid.")
 (terpri))
#<Method SAY :AFTER (BORED-KID T)>

? (defmethod say :around ((child bored-kid) sentence)
 (declare (ignore sentence))
 (princ "This illustrates method combination.")
 (terpri)
 (call-next-method))
#<Method SAY :AFTER (BORED-KID T)>

? (say bad-max "I hate homework.")
This illustrates method combination.
First there is a :before method from bored-kid.
This primary method comes from happy-kid.
Then there is an :after method from bored-kid.
NIL

When say is called on the instance bad-max, CLOS looks first for
:around methods. Then it searches for :before methods, starting
with the most specific, and finds and runs a :before method
associated with bored-kid. It runs the applicable primary method,
which is associated with happy-kid. Then it looks for :after
methods, starting with the least specific, and finds the one associated
with bored-kid, which it runs.

There can be multiple :before and :after methods, as in the
following example:
Appendix B: The Common Lisp Object System 101

? (defmethod say :after ((child fourth-grader) sentence)
 (declare (ignore sentence))
 (format t "This is an :after method for fourth-grader."))
#<Method SAY :AFTER (FOURTH-GRADER T)>

? (defmethod say :after ((child happy-kid) sentence)
 (declare (ignore sentence))
 (princ "Everybody likes my ~A. \(This is an :after method
for happy-kid\)" (pet child))
 (terpri))
#<Method SAY :AFTER (HAPPY-KID T)>

? (setq yoichi (make-instance 'bored-kid-with-pet
 :pet "dog Lizzie"))
#<BORED-KID-WITH-PET #x554FA9>

? (say yoichi "Nobody ever listens to me.")
This illustrates method combination.
First there is a :before method from bored-kid.
This primary method comes from happy-kid.
This is an :after method for fourth-grader.
Everybody likes my dog Lizzie. (This is an :after method for
happy-kid)
Then there is an :after method from bored-kid.
NIL

Combining all methods applicable to this instance produces the
effective method, the complete list of primary and secondary methods.

Mixin classes and auxiliary methods

Mixins are ordinary CLOS classes with useful values or methods that
“mix in” some special behavior. They are generally not used alone, but
add their specializations to another class. In Macintosh Common Lisp,
they usually appear first in the class precedence list. The class that adds
Fred behavior to a window or dialog item, fred-mixin, is a mixin.

Extended examples

The examples folder on the MCL CD includes many other examples of
the use of CLOS. See, for example, “shapes-code.lisp.”
102 Macintosh Common Lisp Reference

103

Appendix C:

The MCL Menubar

Contents

The MCL Menubar / 104
Apple menu / 104
File menu / 104
Edit menu / 105
Lisp menu / 106
Tools menu / 107
Windows menu / 108

This appendix describes all the menus and menu commands in the MCL
menubar.

Like all parts of Macintosh Common Lisp, the menubar is written in MCL and
is fully extensible. You can add and rename menus, menu-items, and
command-key equivalents. This appendix just describes the starting point.

The MCL Menubar

The Macintosh Common Lisp menubar contains six menus. The first
three are familiar from other Macintosh applications:

■ The Apple menu, indicated by an apple (ð), has two sections. The first
has a single command which provides information about MCL. The
second provides access to other Macintosh applications and files.

■ The File menu is used to create and close editor windows, to load and
compile files, to print, and to quit Macintosh Common Lisp.

■ The Edit menu is used to edit and search through text.

The last three menus are specific to MCL:

■ The Lisp menu provides tools for executing expressions and
interrupting and continuing program execution.

■ The Tools menu gives access to a variety of programming tools.

■ The Windows menu lists all the windows open in MCL.

Balloon help is available for all MCL menu commands.

Apple menu

There is a single command on the Apple menu.

About Macintosh Common Lisp
Displays a dialog box showing the version number of Macintosh Common
Lisp and copyright information.

File menu

The File menu includes the following commands.,

New (,-N) Creates an editor window for a new file.

Open… (,-O) Allows you to select a text file and creates a new editor window for the file.
104

Open Selection (,-D)
If there’s a selection in the top editor window, MCL attempts to parse this
selection as a pathname and to create an editor window for the
pathname’s file.

New Listener Creates a new Listener window.

Close (,-W) Closes the current window. If the window is a Fred window that has been
edited since it was last saved, MCL displays a dialog box asking you if you
want to save the changes.

Save (,-S) Saves the contents of the active window to its associated file. If the
window isn’t associated with a file, the “Save As” command is invoked.

Save As… Allows you to specify a directory and filename, and saves the contents of
the active window to that directory and filename.

Save Copy As…Allows you to specify a directory and filename, and saves a copy of the
contents of the active window to that directory and filename.

Revert (,-R) Reverts to the version of the window contents last saved to disk. Before the
reversion occurs, you’re asked to verify whether you really want to revert
to the last version saved.

Load File… (,-Y)
Allows you to select a file for loading into MCL. You may load both source
code and fasl files.

Compile File… Allows you to select a file for compilation. You are asked to specify both
the source and destination files.

Page Setup… Allows you to set printing options for the current printer.

Print… (,-P) Prints the contents of the active window on the currently selected printer.

Quit (,-Q) Closes all windows and exits the Lisp environment. If any window
contains revisions that have not been saved to disk, you’re given the
option of saving them.

Edit menu

The Edit menu includes the following commands.

Undo (,-Z) Undoes the last editor command, if possible. The name of this command
will change according to context, to show what will be undone.

Undo More Undoes previous editor commands in order.
Appendix C: The MCL Menubar 105

Cut (,-X) Deletes the selected region and places it in the Clipboard and on the kill
ring.

Copy (,-C) Copies the selected region to the Clipboard and to the kill ring.

Paste (,-V) Replaces the currently selected text with the text from the Clipboard. If no
text is currently selected, the text is simply inserted at the insertion point.

Clear Deletes the currently selected text. The deleted text is not copied to the
Clipboard. (However, like all deleted text, it is copied onto the kill ring.)

Select All (,-A) Selects the entire contents of the active window.

Search… (,-F) Displays the String Search dialog box.

Search Again (,-G)
Repeats the previous search.

Font Contains a submenu which allows the user to change the font of the
insertion point or of the selected text. The current font of the insertion
point or of the beginning of the selection is shown with a checkmark.

Font Size Contains a submenu which allows the user to change the font size of the
insertion point or of the selected text. The current font size of the insertion
point or of the beginning of the selection is shown with a checkmark.

Font Style Contains a submenu which allows the user to change the font style of the
insertion point or of the selected text. The current font style of the insertion
point or of the beginning of the selection is shown with checkmarks.

Font Color Contains a submenu which allows the user to change the font color of the
insertion point or of the selected text. The current font color of the
insertion point or of the beginning of the selection is shown with a
checkmark.

Word Wrap Allows the user to enable and disable word wrap in Fred windows. By
default, word wrap is desabled in new Fred windows. A check mark in the
title of this command indicates that word wrap is enabled for the front
Fred window.

Lisp menu

The Lisp menu contains the following commands:
106 Getting Started With Macintosh Common Lisp

Execute Selection (,-E)
Executes the current selection in the top editor window. If there is no
selection and the insertion point is next to a parenthesis, the expression
bounded by the parentheses is executed.

Execute All (,-H)
Executes the entire contents of the top editor window.

Abort (,-period)
Cancels the current computation and returns to the read-eval-print loop.
If MCL was in a break loop, it leaves the loop.

Break (,-comma)
Suspends the current computation and enters a break loop. The state of the
machine can be examined in the break loop. You can resume the
computation by choosing the “Continue” command or by calling the
function continue.

Continue (,-slash)
Continues the last operation halted by a break or by a continuable error.

Restarts… (,-backslash)
Provides a list of possible ways to restart the current operation.

Tools menu

The Tools menu contains the following commands:

Apropos Displays the Apropos dialog box. This box accepts a string entered by the
user and displays a table of symbols that contain the string.

Get Info… Gets a symbol name from the user and displays various pieces of
information about the symbol, allowing quick access to a number of tools
for investigating the symbol.

Processes Displays information about all current MCL processes.

List DefinitionsDisplays a modeless dialog box containing a table of all the definitions in
the frontmost editor window. The user can select a definition, and the
window will scroll to that definition.

Search Files Displays a dialog box for searching a set of files for a given string. The user
can use wildcard characters to specify the set of files to search. MCL
supports Common Lisp extended wildcards in pathnames. The search
uses the Boyer-Moore algorithm, and is quite fast.
Appendix C: The MCL Menubar 107

Trace Displays a window showing functions which are traced, and allowing the
user to trace additional functions.

Inspector Contains several subcommands that support inspecting a number of
aspects of the MCL environment.

Save Application…
Brings up a dialog box that allows the user to specify saving parameters
and then save out the current Lisp image as a standalone application.

Extensions Contains subcommands that load commonly desired extensions to MCL,
individually or in groups. MCL users can place additional extensions on
this menu, as described in the file “lib:mcl-extensions.lisp”.

Extensions/Load Multiple…
Allows the programmer to load several extensions simultaneously, and
then optionally save the resulting Lisp image to disk. Images are described
in “Preserving programming sessions” on page 47, and in the MCL
Reference Manual.

Extensions/Save Image…
Allows the programmer to save an image of the current Lisp session.
Images are described in “Preserving programming sessions” on page 47,
and in the MCL Reference Manual.

Backtrace (,-B)
Brings up the stack backtrace window.

Fred Commands
Displays a window listing all the commands available in Fred, the MCL
editor.

Listener Commands
Brings up a window listing all Listener commands that differ from Fred
commands.

Preferences… Brings up a dialog box that allows the user to set the values of various
parameters and global variables of the Lisp environment.

Windows menu

The titles of all visible windows appear as items in this menu. The menu
is ordered by window layer. (That is, the front window—the window
currently in use—is the first menu item and the back window is the last
menu item.)
108 Getting Started With Macintosh Common Lisp

To activate a window, choose its menu item. You can also select the
Listener by giving the command keystroke Command-L.

You can make the front window the back window by holding down the
Option key and clicking the window’s title bar.

In the menu, windows whose contents have been changed but not
saved are marked with a cross next to their names. The name of the
currently selected window is dimmed and cannot be chosen.
Appendix C: The MCL Menubar 109

110 Getting Started With Macintosh Common Lisp

Index

Symbols
#@, point syntax 43

A
Abort menu command 107
aborting from errors 60
About Macintosh Common Lisp menu

command 104
accessor methods of slots 94–96
:accessor slot option 95
actions of dialog items 44
add-menu-items function 46
add-subviews function 44
:after methods 97, 101
:allocation slot option 90
announcements related to MCL 14
anonymous functions 44
ANSI Common Lisp standard 12, 70

and CLOS 84
Apple menu 104
apropos function 53
Apropos menu command 107
arglist function 51
arglist-on-space variable 52
argument lists

congruency of 86, 93
displaying 39, 51–52

:around methods 97, 101
auto-indentation 34
auxiliary methods 86, 97, 100–102

B
Backtrace menu command 108
backtrace-on-break variable 64
balloon help 104
beep function 44
:before methods 97, 101
break loops 59–65
Break menu command 107
bug reports 15
button-dialog-item class 44

buttons 44

C
call-next-method function 94
canceling operations 60
cancellation from errors 60
class names 85
class options for slots 85
class precedence lists 85, 92, 98
:class slot option 90
class slots 90–91
classes 84–85, 87–91

defining 87–88
redefining 90

Clear menu command 106
CLOS

tutorial for 84–102
tutorials 71

Close menu command 105
closing all windows of a class 37
Common Lisp Object System

See CLOS
Common Lisp references 70
Common Lisp: the Language, second edition

12, 70
Common Lisp tutorials 70
comp.lang.lisp.mcl newsgroup 15
compilation, incremental 25
Compile File… menu command 105
compiled files 40
compile-file function 38
compiling files 38–40
congruent lambda lists 86, 93
Continue menu command 107
control keystrokes in Fred 74
control-g in the Listener 28
control-option-n in the Listener 28
control-option-p in the Listener 28
control-return in the Listener 28
Copy menu command 106
creating

classes 87–88
Fred windows 30
generic functions 92–96
instances 88–89
methods 92–96
subclasses 96
windows 42, 45
111

customizing MCL 25, 46, 47
Cut menu command 106
cutting and pasting 34

D
defclass macro 87
defmethod macro 92
deletion commands in Fred 79
delimiters, matching 32
dialog items 43–46

actions of 44
Digitool

how to contact 16
web page of 15

direct superclasses 84
discussions of MCL on the Internet 14
documentation function 52
documentation strings

displaying 39
for built-in and user definitions 52

documentation, online 50–52

E
Edit menu 104, 105–106
editable text dialog items 44
editable-text-dialog-item class 44
edit-definition function 50
editor

See Fred
effective methods 86
Emacs 24, 28, 30

cutting and pasting commands 34
enter keystroke, in the listener 27
error messages 59–60
errors 59–65
escape key, in Fred 74
evaluation 25, 26

See also execution
examples 72, 102
Execute All menu command 107
Execute Selection menu command 107
executing expressions in a Fred window 31
exiting MCL 40
Extensions menu command 108

F
“.fasl” file extension 38
fasl files 38
fasl-save-definitions variable 51
fasl-save-local-symbols variable 51,

65
file compilation 38–40
file mapping 20
File menu 104, 104–105
floppy disk installation 22
Font Color menu command 106
Font menu command 106
Font Size menu command 106
Font Style menu command 106
fonts, setting in an editable text dialog item 45
format function 34, 45
Fred 30–36

deletion commands 79
help commands 75
incremental search 81–82
insertion commands 77–78
Lisp operation commands 80
modifier keys 74
movement commands 76
navigation commands 76
selection commands 77
window commands 80–81

Fred command help 35
Fred Commands menu command 108
Fred windows

creating 30
executing expressions in 31
indentation in 34

free space 53
ftp site for MCL 15
functions

See also methods, generic functions
functions, anonymous 44

G
generic functions 86, 92

defining 92–96
Get Info… menu command 107
get-string-from-user function 32
112 Getting Started With Macintosh Common Lisp

H
help

for Fred commands 35
for Listener commands 28, 37

help commands in Fred 75
hiding windows 37

I
images 47–48
incremental search in Fred 81–82
info-mcl mailing list 14
init file 25
init.lisp 25
initarg keyword 87
initform keyword 87
initial value forms of slots 87
initialization arguments of slots 87
initialize-instance function 96
initializing instances 96
init-keywords for windows 43
inline functions and tracing 67
insertion commands in Fred 77–78
inspect function 55
Inspector 55–58

modifying objects with 55
Inspector menu command 108
installation instructions 19–22

for MCL 3.1 21
for MCL 4.0 19
for MCL 4.0 “Demo Version” 19
from floppies 22

:instance slot option 90
instances 84, 87–91

creating 88–89
in CLOS 85–86
initialization of 96

interface toolkit 47
Internet resources 14–16
introspection commands 53–58

K
keystrokes, help for 36
keyword arguments to make-instance 43
kill-ring 34

L
lambda list congruency 86, 93
lambda special form 44
launching MCL 24

by double-clicking files 48
learning MCL 12–13
libraries

required to restart saved images 48
library folder in the MCL folder 19
Lisp menu 104, 106–107
Lisp operation commands in Fred 80
lisp-based editing 32–35
List Definitions menu command 107
Listener 25–29

saving contents of 28
Listener Commands menu command 108
Listener commands, help for 28, 37
Listener keystrokes 27–28
Load File… menu command 105
loading files 40
local variable names, preserving for debugging

65
locating source code 40
locating symbols 53–55

M
Macintosh programming references 71
mailing lists relating to MCL 14
make-instance function 42, 88
matching delimeters 32
MCL 3.1 and 4.0 compared 11
memory available in a Lisp session 53
memory requirements

of MCL 3.1 18, 21
of MCL 4.0 18, 20

menu class 46
menubar

built-in 104–109
replacing 46

menu-install function 46
menu-item class 46
menu-items 46
menus

built-in 104
Edit menu 105–106
File menu 104–105
in the application framework 46–47
Lisp menu 106–107
Index 113

Tools menu 107–108
Windows menu 108–109

message-dialog function 38
meta keystroke in Fred 74
meta-dot 40, 51
meta-point 40, 51
method combination 97–102
method qualifiers 100–102
methods 86, 92–96

auxiliary 100–102
choosing amongst 99–100
defined on individual instances 93
defining 92–96

mixin classes 102
modifier keys in Fred 74
modifying objects in the Inspector 55
movement commands in Fred 76
multiple inheritance 98–99

N
names

locating 53–55
of classes 85
of views 44
preserving for debugging 65

navigating through source code 32
navigation commands in Fred 76
New Listener menu command 105
New menu command 104
newsgroups relating to MCL 14
nick names of views 44

O
online documentation 50–52
Open Selection menu command 105
Open… menu command 104
opening a Fred window 30
option key in Fred 74
option-g in the Listener 28
option-period 40

P
Page Setup… menu command 105
parameter names, preserving for debugging 65
parentheses, matching 32

Paste menu command 106
“.pfsl” file extension 38
pmcl-compiler-4.0 19
pmcl-kernel-4.0 19
pmcl-library-4.0 19
points, #@ syntax for 43
preferences 25
Preferences… menu command 108
preserving programming sessions 47–48
pretty printing 34
primary methods 86, 97, 97–98
Print… menu command 105
processes 26, 65
Processes menu command 107
programming sessions, preserving 47–48
prototypes, classes as 91

Q
question mark prompt 26
quit function 40
Quit menu command 105
quitting MCL 40

R
reader methods 94
:reader slot option 95
read-eval-print loop 25, 62
record-source-file variable 50
recovering from errors 60, 61
redefining classes 90
references for Common Lisp 70
references for Macintosh programming 71
restarts window 61–62
Restarts… menu command 107
return keystroke in the Listener 27
Revert menu command 105
room function 53

S
Save Application… menu command 108
Save As… menu command 105
Save Copy As… menu command 105
Save menu command 105
save-application function 48
save-definitions variable 51, 66
114 Getting Started With Macintosh Common Lisp

save-doc-strings variable 52
save-local-symbols variable 51, 65
saving

souce code 35
the contents of the Listener 28

Search Again menu command 106
Search Files menu command 107
Search… menu command 106
Select All menu command 106
selecting expressions 33
selecting windows 37
selection commands in Fred 77
self-recursive functions and tracing 67
setf macro, used to set slot values 88, 94
set-view-font function 45
set-view-size function 42
set-window-title function 42
shared slots 90
slot specifiers 85
slots 85

accessor methods for 94–96
initial value forms of 87
initialization arguments of 87
reader methods for 94
setting the values of 88–89
shared by instances of a class 90–91
writer methods for 94

slot-value function 88
snapshots 47–48
source code 38

locating 40
retrieving 50
saving 35

source code files 29
specialized arguments 86
stack backtrace 64–65
stacks and break loops 63
standard-object class 85
starting MCL 24

by double-clicking files 48
under virtual memory 25

step macro 66
stepping code 66
stepping traced functions 67
subclasses 84

creating 96
subviews 43–46
superclasses 84
symbols, locating 53–55
system requirements 18

T
tab, in Fred windows 34
tail recursion 64
target function 42
tasks 65
technical support 15
testing code in the Listener 27
text editor

See Fred
ThreadsLib 19
Tools menu 104, 107–108
toplevel-eval function 59
trace macro 66
Trace menu command 108
tracing functions 67–68
tutorials for CLOS 71, 84–102
tutorials for Common Lisp 70

U
Undo menu command 105
Undo More menu command 105
upgrading information 20

V
view-nick-name slot of views 44
views 42–46

nick names for 44
setting the size of 42

virtual memory 20, 25

W
web page with MCL information 15
window class 42
window commands in Fred 80–81
window size, setting 42
window title

retrieving 43
setting 42

windows 42–46
creating 42, 45
init-keywords for 43
special features of 37

Windows menu 104, 108–109
window-title function 43
without-interrupts macro 66
Index 115

Word Wrap menu command 106
writer methods 94

Y
yanking text 34
116 Getting Started With Macintosh Common Lisp

Index 117

THE DIGITOOL PUBLISHING SYSTEM

This Digitool manual was written, edited, and
composed on a desktop publishing system
using Apple Macintosh computers and Adobe
FrameMaker software. Proof and final pages
were created on the Apple LaserWriter
printers. Line art was created using Adobe
Illustrator. PostScript®, the page-description
language for the LaserWriter, was developed
by Adobe Systems Incorporated.

Text type and display type are Palatino. Bullets
are ITC Zapf Dingbats®. Some elements, such
as program listings, are set in Apple Courier.

Writer: Andrew Shalit

Illustrator: Sandee Karr

Special thanks to Gary Byers, Steve Hain, Alice
Hartley, David Lamkins, Steven Mitchell, Bill
St. Clair, and our skilled and helpful alpha and
beta testers.

	Contents
	Figures and tables
	Introduction
	Introducing Macintosh Common Lisp
	MCL 4.0 and 3.1
	Roadmap: Learning MCL
	Learning the Macintosh
	Learning Common Lisp
	Learning MCL
	Exploring MCL

	For more information
	MCL Discussions and Announcements
	Technical Support and Bug Reports
	Other Internet Resources
	The Digitool Web Page
	The MCL ftp Site

	Contacting Digitool

	Chapter 1: Installing MCL
	System requirements
	MCL 4.0
	MCL 3.1

	Installation
	Installing MCL 4.0
	MCL 4.0 Memory Requirements
	Installing MCL 3.1
	MCL 3.1 Memory Requirements

	Creating Installation Floppies

	Chapter 2: A Brief Tour of MCL
	Overview of MCL
	Starting MCL
	Interacting with the Listener
	Evaluating expressions
	Working with the Listener
	The Listener and the Lisp Heap
	The Listener and text files

	The MCL editor, Fred
	Creating a Fred window
	Executing expressions in a Fred window
	Lisp-based editing
	Matching delimiters
	Auto-indentation
	Cutting and pasting with Emacs commands
	Executing your program

	Saving source code to a file
	Getting help on Fred commands
	Getting help on Listener commands

	Other Window Features
	Compiling files
	File compilation example

	What you’ve learned

	Chapter 3: The Application Framework
	Overview
	Windows and views
	Creating a window
	Window init-keywords

	Views and subviews
	Adding a button
	Adding an editable text item
	Retrieving the text from an editable text item

	Creating a complex window

	Menus
	Adding a menu and a menu-item

	The interface toolkit
	Preserving programming sessions
	What you’ve learned

	Chapter 4: Debugging
	MCL’s multiple debugging facilities
	Documentation commands
	Source code
	Argument lists
	Documentation

	Introspection commands
	Free space
	Finding symbols
	The apropos function
	The apropos window

	Examining objects with the Inspector
	Inspecting an object with inspect
	Inspecting objects from other tool windows

	Errors and Break Loops
	Reading an error message
	Recovering or aborting
	Aborting

	The break loop
	The stack backtrace
	Processes

	The stepper
	Trace
	What you’ve learned about debugging

	Chapter 5: Sources of Additional Information
	Common Lisp References
	Common Lisp Tutorials
	If you are learning CLOS

	Macintosh Programming
	Examples

	Appendix A: Fred Commands
	Fred modifier keys
	Help commands
	Movement
	Selection
	Insertion
	Deletion
	Lisp operations
	Windows
	Incremental search

	Appendix B: The Common Lisp Object System
	MCL and CLOS
	Definitions
	Classes and their superclasses
	Slots
	Instances
	Generic functions and methods

	Classes and instances
	Creating a class with the macro defclass
	Creating an instance and giving its slots values
	Redefining a class
	Allocating the value of a slot in a class
	Classes as prototypes of other classes

	Methods
	Defining a method and creating a generic function
	Congruent lambda lists
	Defining methods on instances
	Creating and using accessor methods
	Customizing initialization with initialize-instanc...
	Creating subclasses and specializing their methods...

	Method combination
	The primary method
	The primary method and the class precedence list
	Examples of classes with multiple superclasses
	When there is a conflict: Choosing between methods...
	Choosing between methods associated with direct an...

	Creating auxiliary methods and using method qualif...
	Mixin classes and auxiliary methods

	Extended examples

	Appendix C: The MCL Menubar
	The MCL Menubar
	Apple menu
	File menu
	Edit menu
	Lisp menu
	Tools menu
	Windows menu

	Index

