

Digitool

For
 Macintosh

Common Lisp
 versions
3.1 & 4.0

Macintosh Common Lisp
Release Notes

Digitool

Developer Technical Publications
© Digitool, Inc. 1996

Digitool, Inc.
© 1996, Digitool, Inc. All rights
reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval
system, or transmitted, in any
form or by any means,
mechanical, electronic,
photocopying, recording, or
otherwise, without prior written
permission of Digitool, Inc.,
except in the normal use of the
software or to make a backup
copy of the software. The same
proprietary and copyright
notices must be affixed to any
permitted copies as were affixed
to the original. This exception
does not allow copies to be made
for others, whether or not sold,
but all of the material purchased
(with all backup copies) may be
sold, given, or loaned to another
person. Under the law, copying
includes translating into another
language or format. You may use
the software on any computer
owned by you, but extra copies
cannot be made for this purpose.
Printed in the United States of
America.
MCL is a trademark of
Digitool, Inc.
One Main Street,
Cambridge, MA 02142
617-441-5000
The Apple logo is a registered
trademark of Apple Computer,
Inc. Use of the “keyboard” Apple
logo (Option-Shift-K) for
commercial purposes without
the prior written consent of
Apple may constitute trademark
infringement and unfair
competition in violation of
federal and state laws.
Apple Computer, Inc.
20525 Mariani Avenue
Cupertino, CA 95014-6299
408-996-1010
Apple, the Apple logo, APDA,
AppleLink, A/UX, LaserWriter,
Macintosh, and MPW are
trademarks of Apple Computer,
Inc., registered in the United
States and other countries.
Balloon Help, Finder,
QuickDraw, and ToolServer are
trademarks of Apple Computer,

Inc.
Adobe, Acrobat and PostScript
are registered trademarks of
Adobe Systems Incorporated.
CompuServe is a registered
trademark of CompuServe, Inc.
Palatino is a registered
trademark of Linotype
Company.
Internet is a trademark of Digital
Equipment Corporation.
ITC Zapf Dingbats is a registered
trademark of International
Typeface Corporation.
Microsoft is a registered
trademark of Microsoft
Corporation.
UNIX is a registered trademark
of UNIX System Laboratories,
Inc.
Simultaneously published in the
United States and Canada.

LIMITED WARRANTY ON MEDIA
AND REPLACEMENT

If you discover physical defects
in the manual or in the media on
which a software product is
distributed, Digitool will replace
the media or manual at no charge
to you provided you return the
item to be replaced with proof of
purchase to Digitool.
ALL IMPLIED WARRANTIES
ON THIS MANUAL,
INCLUDING IMPLIED
WARRANTIES OF
MERCHANTABILITY AND
FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN
DURATION TO NINETY (90)
DAYS FROM THE DATE OF
THE ORIGINAL RETAIL
PURCHASE OF THIS
PRODUCT.
Even though Digitool has
reviewed this manual,
DIGITOOL MAKES NO
WARRANTY OR
REPRESENTATION, EITHER
EXPRESS OR IMPLIED, WITH
RESPECT TO THIS MANUAL,
ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR
FITNESS FOR A PARTICULAR
PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS
IS,” AND YOU, THE
PURCHASER, ARE

ASSUMING THE ENTIRE
RISK AS TO ITS QUALITY
AND ACCURACY.
IN NO EVENT WILL
DIGITOOL BE LIABLE FOR
DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR
CONSEQUENTIAL
DAMAGES RESULTING
FROM ANY DEFECT OR
INACCURACY IN THIS
MANUAL, even if advised of the
possibility of such damages.
THE WARRANTY AND
REMEDIES SET FORTH
ABOVE ARE EXCLUSIVE AND
IN LIEU OF ALL OTHERS,
ORAL OR WRITTEN, EXPRESS
OR IMPLIED. No Digitool
dealer, agent, or employee is
authorized to make any
modification, extension, or
addition to this warranty.
Some states do not allow the
exclusion or limitation of implied
warranties or liability for
incidental or consequential
damages, so the above limitation
or exclusion may not apply to
you. This warranty gives you
specific legal rights, and you may
also have other rights which vary
from state to state.

Contents

Installation Instructions / 5
MCL Demo / 5
Changes Common to MCL 3.1 and 4.0 / 6

Compiled Files / 6
Save Application / 6
Logical Directories / 7
Table Drawing / 7
Handles / 7
Floating Point Access / 8
Script Manager Extensions / 8
Miscellaneous New Functions / 9
Exported Symbols / 11
Menu and Tool Changes / 12

Changes Specific to MCL 4.0 / 13
Memory Requirements and Startup / 13
Garbage Collection / 14
Stacks and Processes / 14
Save Application / 14
Interpreted Foreign Access / 15
Optimizations / 15

Changes Specific to MCL 3.1 / 16
Differences Between MCL 4.0 and MCL 3.1 / 16
3

4 Macintosh Common Lisp Reference

MCL 4.0/3.1 Release Notes

These notes describe changes made in the most recent versions of MCL.

If you will be programming on a PowerPC Macintosh, you will be using
MCL 4.0. The changes described are relative to the previous PowerPC
release, MCL 3.9.

If you will be programming on a 68K Macintosh, you will be using MCL
3.1. The changes described are relative to the previous 68K release,
MCL 3.0.

If you are upgrading from the 68K version of MCL to the PowerPC
version, you should also read the MCL 3.9 Release Notes, which are
included in the MCL 3.9 documentation folder. These release notes
describe MCL’s transition from the 68K to the PowerPC.

For the most part, MCL 4.0 and MCL 3.1 provide the same
programmer’s interface. Differences are noted in a final section of these
release notes.

Installation Instructions

Complete configuration requirements and installation instructions for
MCL 4.0 and 3.1 are given in Getting Started with MCL, available in
hardcopy and Acrobat format with this release.

Note that the PPCExceptionEnabler system extension is no longer
needed by MCL 4.0.

MCL Demo

The MCL CD now includes a demonstration version of MCL. This
version includes all the features of the full version of MCL, except that
it can only be used for fifteen minutes at a time. After fifteen minutes, it
will automatically quit to the Finder.

Trial users can write to Digitool for a password which will allow them
to use the demonstration for longer than fifteen minutes at a time. The
password lasts for thirty days. To receive a password, send e-mail to
demo-mcl@digitool.com.

The demonstration version has the MCL libraries built-in. They do not
need to be included separately. However, there must be enough free
memory to load the libraries. (If there is not, the Macintosh will give an
erroneous “library not found” message.)

Please feel free to share this demonstration version of MCL with your
friends and colleagues. Trial users can access the MCL Getting Started
guide on the world wide web at

 http://www.digitool.com/MCL-getting-started.html

Changes Common to MCL 3.1 and 4.0

This section describes changes which were made in both MCL 4.0 and
3.1.

Compiled Files

The fasl version has changed in both MCL 4.0 and MCL 3.1. Because of
this, all files compiled in an earlier version of MCL will need to be
recompiled.

Save Application

The default value of the :init-file argument to save-
application is no longer nil. Instead, it is the result of calling
application-init-file on *application*. If you do not want
any init file loaded, you should ensure that this call returns nil for
your program’s value of *application*.
6 Macintosh Common Lisp Reference

Logical Directories

Old style logical directories (as created by the function def-logical-
directory) are no longer built-in to MCL. To ease the transition for
people who still use them, the file “Library;logical-dir-
compatibility.lisp” can be used to restore the functionality.

Table Drawing

set-table-sequence now invalidates the entire table only if the
new sequence is not eq to the old one and at least one of the elements
is not eq. This change was made to stop the flashing in some dialogs. If
you have code that modifies a table’s sequence in place and then calls
set-table-sequence to display the modified sequence, the display
may not update as you wish. You’ll have to change the code to explicitly
redraw as necessary.

If you wish to restore the old behavior, you can do so with the following
method:

 (defmethod set-table-sequence :after ((item t)
 (new-sequence t))
 (invalidate-view item))

Handles

with-dereferenced-handles is no longer a synonym for with-
pointers. with-dereferenced-handles now assumes that the
handles it is passed are really handles. This should require no changes
to code that was written according to the documentation of with-
dereferenced-handles. It may, however, break code that
inadvertently calls with-dereferenced-handles with non-
handles.
7

Floating Point Access

:double-float and :single-float now work as record field
types. Accessing these record fields returns a freshly allocated floating
point number.

%get-double-float, %get-single-float, %hget-double-
float, %hget-single-float, %put-double-float, %put-
single-float, %hput-double-float, %hput-single-float
are new accessors that work just as %get-long and friends, but access
floats.

These getters take an optional floating point number parameter that
will be destructively modified and returned, so that it is possible to
access a float without consing. If you use this feature, be careful not to
accidently overwrite a floating point number that you are using
elsewhere. Take particular care not to override the system-wide unique
0.0 instance. It is safest to create a fresh target by explicitly allocating a
new float, for example by the call (ccl::%copy-float 0.0).

Script Manager Extensions

The following extensions to the script manager are present in both MCL
4.0 and MCL 3.1.

set-extended-string-script [Function]

Syntax set-extended-string-script script

Sets the script to use for printing extended-strings. If the script is not set
explicitly, the default is the system script if it is a 2 byte script; otherwise
the default is an installed 2 byte script. If there are no installed 2 byte
scripts, the default is nil.

Arguments script A script, as described by Inside Macintosh.

set-extended-string-font [Function]

Syntax set-extended-string-font font-spec

Sets the font to use for printing extended strings. If not set explicitly, the
default is the #$smScriptAppFond for the extended-string script.
8 Macintosh Common Lisp Reference

Arguments font-spec A font spec, as described by the MCL Reference Manual.

convert-kanji-fred [Function]

Syntax convert-kanji-fred oldpath &optional
 newpath (if-exists :supersede)

This function is used to convert files produced by KanjiFred to a format
that can be used by MCL 4.0 and 3.1.

Arguments oldpath The pathname of the file to convert.

newpath The pathname at which to store the converted file. The
default is oldpath.

if-exists A keyword describing what action to take if newpath
already exists. The allowed keywords are the same as for
copy-file.

input-file-script [Variable]

This variable can be set to a 2 byte script to be used when reading a text
file that was not created with Fred and is known to contain text in a
single 2 byte script.

Miscellaneous New Functions

The following new functions are present in both MCL 4.0 and MCL 3.1.

fred-autoscroll-h-p [Generic Function]

fred-autoscroll-v-p [Generic Function]

Syntax fred-autoscroll-h-p (view fred-mixin)
fred-autoscroll-v-p (view fred-mixin)

These generic functions are called indirectly by (view-click-
event-handler fred-mixin). They control whether the view will
be automatically scrolled when the mouse cursor goes outside of it. The
default methods return true. You can specialize this generic function on
subclasses of fred-mixin in order to change this behavior.
9

Arguments view A fred-mixin.

load-patches [Function]

Syntax load-patches &optional source-dir all

Loads some or all of the compiled files in the patch file directory, and
optionally sets a patch version number which determines the version
specified in the vers 1 resource created when save-application is
called. The patches directory is a folder whose name is of the form
“Patches x.y”, where x and y are the major and minor version numbers
of MCL (for example, “Patches 3.1b1” or “Patches 4.0”).

If all is nil, only new patches are loaded. A patch is considered to be
new if its name (excluding file extension) ends in “pn”, where n is a
number greater than the current patch version. The current patch
version is determined from the vers 1 resource. The patch version
number will be set to the highest value of n encountered, and is
returned by load-patches if set. This value is then used by save-
application.

If all is true, all patches are loaded and the patch version is not set.

Arguments source-dir The directory containing the patch file directory. The
default value for this argument is the value of the form
(full-pathname "ccl:" :no-error nil).

all If true, load all compiled files in alphabetical order, and
don’t set the patch version number. If nil load only
compiled files with names as specified above, and set the
patch version number. The default is nil.

load-all-patches optional source-dir [Function]

Syntax load-all-patches &optional source-dir

Loads all compiled files from a patches directory by executing (load-
patches source-dir t) and resets the current patch version to nil.
Returns nil.

Arguments source-dir The directory containing the patch file directory. The
default value for this argument is the value of the form
(full-pathname "ccl:" :no-error nil).
10 Macintosh Common Lisp Reference

application-init-file [Generic Function]

Syntax application-init-file (application application)
application-init-file (application
 ccl::lisp-development-system)

This generic function is used to specify the init-file of an application.
The built-in method specialized on the application class returns nil
(meaning there is no init file). The built-in method specialized on the
ccl::lisp-development-system class returns "init".

This generic function is used to generate a default value for the :init-
file argument of save-application.

Arguments application An application class.

Exported Symbols

The following additional symbols are exported from the CCL package.

■ add-to-shared-library-search-path (4.0 only)

■ application-init-file

■ convert-kanji-fred

■ fred-autoscroll-h-p

■ fred-autoscroll-v-p

■ %get-double-float

■ %get-single-float

■ %hget-double-float

■ %hget-single-float

■ %hput-double-float

■ %hput-single-float

■ *input-file-script*

■ load-all-patches

■ load-patches

■ %put-double-float

■ %put-single-float

■ remove-from-shared-library-search-path (4.0 only)

■ set-extended-string-font

■ set-extended-string-script
11

Menu and Tool Changes

The following changes to menus and tools were made in both MCL 4.0
and MCL 3.1.

Search Files Tool

The user interface for the Search Files tool has changed. If you prefer the
old user interface, set ccl::*use-old-search-file-dialog* to
t.

Text Editing Menus

A set of font menus has been added to the Edit menu. The source code
for these menus is in the file “font-menus.lisp”. This file has been
moved from the “Examples” folder to the “Library” folder.

There is a new Word Wrap command on the Edit menu. This command
allows you to turn word wrap on and off in the current editor.

Extensions Menu

An “Extensions” submenu has been added to the Tools menu. The
menu allows you to load individual or aggregate facilities, and to save
a new image quickly.

Listeners

Listeners created for error break loops now indicate the name of the
process they represent in their titles.

Stack Backtrace Tool

The stack backtrace now hides the internal frames. To show them,
either select the Show all frames command or the Default show all
frames command on the Commands pop-up in the Stack Backtrace tool,
or set inspector::*backtrace-hide-internal-functions-
p* to nil.

If you wish the backtrace to hide additional functions, add them or their
names to inspector::*backtrace-internal-functions*.

Apropos Tool

The Apropos Tool accessed through the Tools menu no longer has
Specializers or Qualifiers pop-ups. It has new check box for External
Symbols Only.
12 Macintosh Common Lisp Reference

Trace Tool

The Trace tool has a new pop-up which allows the traced function to be
stepped.

Execute Buffer Command

The Execute Buffer command on the Lisp menu has been renamed to
Execute All.

Balloon Help

Due to an apparent bug in the _HMShowBalloon system call, balloon
help will not be shown for a menu-item if the menu-item is above the
active window. MCL can work around this bug by temporarily setting
the low-memory global #$windowlist to null while showing the
balloon help. If you want MCL to do this, set the variable *fix-menu-
balloon-help-bug* to a true value. The default value of this
variable is nil.

Changes Specific to MCL 4.0

The following changes made to MCL 4.0 were not made to MCL 3.1.

Memory Requirements and Startup

When run without virtual memory, MCL 4.0 requires half as much
memory for its heap as 3.9 did. It also starts up faster with virtual
memory enabled, and the application disk file is smaller.

(These features first appeared in the 3.9.1 kernel, which was made
available to beta testers.)
13

Garbage Collection

The ephemeral garbage collector now works in MCL 4.0, and the
functions that control it are the same as in earlier versions of MCL. See
the reference manual descriptions of egc, egc-enabled-p, egc-
active-p, egc-mmu-support-available-p, egc-
configuration, and configure-egc.

Stacks and Processes

In MCL 4.0, two out of the three stacks for a stack group are now
segmented. If a stack overflow occurs in one of those two stacks, you
can continue from the resulting error just as you can in MCL 3.1. The
:stack-size keyword argument to make-process and process-
run-function and the optional stack-size argument to make-stack-
group control the total amount of stack space that will be allowed to
accumulate before an error is signalled. A stack group’s control stack,
the one allocated by the Macintosh thread manager, is not segmented.
An overflow of the control stack always signals an error. The initial size
of the control stack is 1/3 of the :stack-size argument to make-
process, process-run-function, or make-stack-group except
that it will never be less than ccl::*min-sp-stack-size*. The
initial value of ccl::*min-sp-stack-size* is 16K.

Save Application

save-application now copies all the cfrg resources from the
application file. This allows you to bundle the CCL application and the
pmcl-kernel, pmcl-compiler, and pmcl-library shared library files into a
single file. It also allows you to add your own shared libraries to the
application file. The file “Examples;cfm-mover.lisp” includes functions
that bundle all the MCL libraries into a single file (see the commented
out example form at the bottom of the file).

The cfrg resources are generated automatically save-application.
If you specify a resource file using the Save Application tool, or if you
specify a :resources argument to save-application, you should
not include a cfrg resource.

The :excise-compiler option to save-application now works
in MCL 4.0.
14 Macintosh Common Lisp Reference

Interpreted Foreign Access

MCL 4.0 code that calls external functions defined with deftrap,
define-entry-point, or defpascal needs to be compiled if it is to
run in an application with the compiler excised. Attempting to interpret
such functions will invoke the compiler, and error if the compiler is not
present.

Optimizations

MCL 4.0 contains a number of significant optimizations that were not
present in MCL 3.9.

■ Logical operations (and arithmetic operations where the result is
known to be a fixnum) on more than 2 known fixnums are now
performed inline. They used to be inlined only for exactly 2 operands.

■ The compiler now recognizes that the result of +, -, /, and * of two
double-floats is also a double float. Operations with more than 2
double-float arguments are performed inline.

■ Some arithmetic operations are executed by subprimitives that check
for fixnum operands and if so do the operation without calling the
general function.

■ format of floats is faster and conses less.

■ truncate, floor, ceiling, and round no longer compute their
second return value unless it is required by the caller.

■ truncate, floor, ceiling, and round of bignums are faster and
cons less. rem and mod of bignums do not cons the first value of
truncate. Some other bignum operations cons less.

■ equal is faster.

■ Some cases of typep, require-type, and find-class are
optimized.

■ sort no longer calls the key function more often than necessary.

■ Some additional optimizations in hash table access are present.

■ Echo of typing in the editor is faster.

■ Some string manipulation functions are faster.

■ Equal hash tables are faster for list or string keys that contain the same
elements in differing order.

■ There was an error in printing circular structure that caused it to be
extremely slow.

■ vector-push-extend grows the vector by a fraction of its size rather
than a constant value.
15

■ Generic functions of 1 argument or 2 arguments specialized on the first
are faster. There are some method dispatch improvements. class-of
is faster.

■ make-point is faster.

■ There are now compiler optimizers for logorc2, lognand, lognor,
logandc2, and lognot.

■ Some cases of assoc and member are faster.

Changes Specific to MCL 3.1

A large number of bugs have been fixed between MCL 3.0 and MCL 3.1.
Most of these bug fixes were previously released as patches to MCL 3.0.
For lists of specific patches, see the patch release notes.

Differences Between MCL 4.0 and MCL 3.1

■ The full termination facility implemented by terminate-when-
unreachable and related functions is available in MCL 4.0 but not
3.1.

■ MCL 3.1 has short floats, 4.0 does not.

■ MCL 4.0 supports shared libraries and accesses system functionality
through shared library entry points. MCL 3.1 Does not support shared
libraries, and it accesses system functionality through traps. (While the
syntax of shared library entry point calls and trap calls are the same, the
compilation environments are slightly different. See the MCL 3.9
release notes for details.)

■ There are minor differences in the type systems of MCL 4.0 and 3.1.

■ In MCL 4.0, arithmetic conditions include the operation and
arguments. They are not included in MCL 3.1.

■ MCL 4.0 provides user control over which floating point exceptions to
signal.
16 Macintosh Common Lisp Reference

■ Stack allocation is different in MCL 4.0 and 3.1.
In MCL 4.0 a process has 3 stacks. The value stack and temporary stack
are allocated in multifinder temporary memory if available, otherwise
in the Mac heap; these stacks can be grown dynamically. The control
stack is allocated by the Macintosh process manager on the Mac heap;
this stack cannot be grown dynamically.
In MCL 3.1 a process has 2 stacks allocated in the Mac heap. Both of
these stacks can grow.

■ MCL 4.0 inlines more arithmetic operations when argument types are
declared.

■ Fixnum size is 30 bits in MCL 4.0, and 29 bits in MCL 3.1.

■ Array size limits are different in MCL 4.0 and 3.1. In 4.0 an array can
have 16 million elements, while in 3.1 it can have one million elements.
17

18 Macintosh Common Lisp Reference

Index

Symbols
#$windowlist low memory global 13

A
add-to-shared-library-search-path

function 11
application class 11
application-init-file generic function

6, 11
Apropos tool 12
arithmetic conditions 16
array size limits 17

B
Backtrace tool 12
*backtrace-hide-internal-

functions-p* variable 12
backtrace-internal-functions

variable 12
balloon help 13

C
cfrg resources 14
compiled files 6
configure-egc function 14
convert-kanji-fred function 9, 11

D
def-logical-directory function 7
demonstration version of MCL 5
differences between MCL 4.0 and MCL 3.1 16
directories, logical 7
:double-float record field accessor 8
drawing, of tables 7

E
Edit menu 12
egc function 14
egc-active-p function 14
egc-configuration function 14
egc-enabled-p function 14
egc-mmu-support-available-p function

14
:excise-compiler argument to save-

application 14
Execute All command 13
Execute Buffer command 13
Extensions menu 12

F
fasl file version change 6
fix-menu-balloon-help-bug variable

13
fixnum size 17
floating point exceptions 16
floating point numbers 8
font menu 12
fred-autoscroll-h-p generic function 9,

11
fred-autoscroll-v-p generic function 9,

11

G
garbage collection 14
gc 14
%get-double-float function 8, 11
%get-single-float function 8, 11

H
handles, dereferencing 7
%hget-double-float function 8, 11
%hget-single-float function 8, 11
_HMShowBalloon system call 13
%hput-double-float function 8, 11
%hput-single-float function 8, 11

I
:init-file argument to save-

application 6, 11
19

input-file-script variable 9, 11
installation instructions 5

L
lisp-development-system class 11
Listener names 12
load-all-patches function 10, 11
load-patches function 10, 11
logical directories 7

M
make-process function 14
make-stack-group function 14
MCL Demo 5
memory requirements 13
min-sp-stack-size variable 14

N
numbers, floating point 8

O
optimizations 15–16

P
PPCExceptionEnabler 5
processes 14
process-run-function function 14
%put-double-float function 8, 11
%put-single-float function 8, 11

R
remove-from-shared-library-search-

path function 11
resources in stand-alone applications 14

S
save-application function 6, 10, 11, 14
script manager 8–9
Search Files tool 12
set-extended-string-font function 8,

11
set-extended-string-script function 8,

11
set-table-sequence function 7
shared libraries 16
short floats 16
:single-float record field accessor 8
stack allocation 14, 17
Stack Backtrace tool 12
stack overflow 14, 17
stepping with the Trace tool 13
symbols, newly exported 11

T
tables, drawing of 7
terminate-when-unreachable function

16
termination 16
Trace tool 13
traps 16
type systems 16

U
use-old-search-file-dialog

variable 12

W
with-dereferenced-handles macro 7
with-pointers macro 7
word wrap 12
20 Macintosh Common Lisp Reference

	Contents
	MCL 4.0/3.1 Release Notes
	Installation Instructions
	MCL Demo
	Changes Common to MCL 3.1 and 4.0
	Compiled Files
	Save Application
	Logical Directories
	Table Drawing
	Handles
	Floating Point Access
	Script Manager Extensions
	Miscellaneous New Functions
	Exported Symbols
	Menu and Tool Changes
	Search Files Tool
	Text Editing Menus
	Extensions Menu
	Listeners
	Stack Backtrace Tool
	Apropos Tool
	Trace Tool
	Execute Buffer Command
	Balloon Help

	Changes Specific to MCL 4.0
	Memory Requirements and Startup
	Garbage Collection
	Stacks and Processes
	Save Application
	Interpreted Foreign Access
	Optimizations

	Changes Specific to MCL 3.1
	Differences Between MCL 4.0 and MCL 3.1

	Index

